RT-SCALER: Adaptive Resource Allocation Framework for Real-Time Containers

Václav Struhár⁽¹⁾, Silviu S. Craciunas⁽²⁾, Mohammad Ashjaei⁽¹⁾, Moris Behnam⁽¹⁾, and Alessandro V. Papadopoulos⁽¹⁾

- (1) Mälardalen University, Sweden
- (2) TTTech Computertechnik AG, Vienna, Austria

MALARDALENS HÖGSKOLA ESKILSTUNA VÄSTERAS Outline

- Motivation & Background
- Problem definition
- RT-SCALER: Adaptive Resource Allocation Framework for Realtime Containers
 - Overview
 - Offline Phase
 - Online Phase
- Practical insight
- Results
- Future Work
- Conclusion

Motivation & Background

RT containers are gaining tractions:

- PREEMPT_RT + RT Containers
- Hierarchical Scheduling + RT Containers

However, container-based virtualization:

- Interference between containers
- Shared hardware for RT containers + non RT containers
- Unpredictable workloads (IO operations, shared resource usages)

=> Temporal unpredictability

High-level idea for an orchestration framework to enable realtime capabilities.

Two Phases:

- Offline (Static allocation)
 - Deployment of container
 - Where to place the container?
- Online (Dynamic allocation)
 - Continuous adjusting resources of containers

System Overview

The main components:

- RT Containers
- Best-effort containers
- Container-level Controller
 - independently controls resources allocated to the corresponding container
- Node-level Controller
 - maintains the distribution of system resources amongst the real-time containers deployed in a single computing node
- Cluster-level Controller
 - The cluster-level controller has a holistic view of the system and can decide to re-allocate containers to nodes or allocate newly arriving containers to initial nodes.

Offline Phase

Where to place the container?

- 1. Calculate a set of ideal RT interfaces
- Allocation of containers to nodes => an optimization problem similar to the bin-packing problem
- Additional hints for the orchestrator
 - Performance Metrics of already deployed containers
 - ...

Request for deployment:

Online Phase

- To react on unforeseen changes on temporal behaviour
- Monitoring + Adjusting System Resources + Container Migration
- Monitoring
 - Real-time related metrics
 - Deadline miss rate
 - Lateness of the tasks
 - Response time of the tasks
- Adjusting resources
 - CPU reservation
- Relocation
 - If there is not enough resources in the computing node

Practical insight

- Linux + Hierarchical Scheduling Patch by Abeni et al. + Docker
- Monitoring module
 - Response times
- Resource adjustment module
 - PID controller
 - Target response time
 - Adjusting CPU allocation in order to reach the target response time

- investigate various adaptation strategies of real-time containers
 - Employ machine learning & predictions
 - Decide what parameters to change (e.g., container period/budget, migration between cores)
- experimentally evaluate the complex control loop across different hierarchical levels in distributed edge computing applications

Conclusion

High-level idea for an orchestration framework to enable real-time capabilities.

- reacting to unforeseen situations
- adaptation of container resources
- migration of containers

Thank You!

Václav Struhár vaclav.struhar@mdh.se