
Safety Verification of Third-Party
Hardware Modules via

Information Flow Tracking
Andres Meza, Francesco Restuccia, Ryan Kastner, and Jason Oberg

In a Nutshell

• Introduce the AXI bus stall problem

• Propose a safety verification methodology to identify the AXI bus stall
problem using:
• Simulation-based hardware information flow tracking

• A custom-developed, parametrizable Trigger Module

• Validate the methodology on SoC with fully-compliant AXI modules

System-on-Chip – Typical Architecture

C1

P1 Pi PL

AXI Interconnect

M

Ci

M

CN

M

S S S

M M M

S S S

A typical modern SoC architecture (simplified)

Controller (AXI Manager)

Processors, DMAs, hardware accelerators, etc.

Interconnect (AXI Manager + Subordinate)

Arbitrates access and solves conflicts

Peripheral (AXI Subordinate)

Memories (RAM, ROM, flash, etc.), peripherals, etc.

Controllers access peripherals via the interconnect

The AXI Bus Stall Problem

C1 issues write request

A1 directed to P1

C2 issues write request

A2 directed to P1

A1 wins arbitration at IAXI and

it is propagated to P1 by IAXI before A2

C1 delays the data provisioning for A1 which delays the

service of A2 even if C2 is ready to provision data for A2

T1

T2

T3

P1 is idle and ready to fulfill a write request T0

C1

P1

AXI Interconnect

M

C2

M

S

M

S S

A sampleSoC architecture

Fully-compliant AXI controllers can delay their data provisioning for an unbounded time

The Safety Verification Flow

Determine
Delay Limits

Insert
Trigger

Modules

Specify

Security

Properties

Generate
IFT Models

Create

Testbench

Verify Safety

Properties

1 Determine the Delay Limits

2 Insert the Trigger Modules

3 Specify the Safety Properties

4 Generate the IFT Models

5 Create a Testbench

6 Verify Properties via Simulation

Safety Verification

1. Determine the Delay Limits

Delay Limits for
Controllers

Specific to a Single Controller
Highly-Dependent on Timing

Constraints of System

Maximum Amount of Delay (in clock cycles) a

Controller can Safely Introduce into the System

Delay Limit

Input Output

Design

System Constraints

System
Integrato

rs

2. Insert the Trigger Modules

Original Design
(with Trigger Modules)

Tracks the Write Transaction

State of a Single Controller

Only Needed During

Verification Process

Indicates when Controller is Illegally Provisioning

Data based on Parametrizable Delay Limit

Trigger

Module

Input Output

Original Design

Delay Limits for
Controllers

1

System
Integrato

rs

3. Specify the Safety Properties

Safety Properties

Evaluable/Verifiable

Addresses the potential

weakness of

mechanism

Applicable to Specific

Controller

Property

Input Output

Safety Property
(Template)

Pairs of Controllers
and Trigger Modules

2

System
Integrato

rs

4. Generate the IFT Models

IFT Models

Implements the IFT Logic Used

to Track/Verify a Single Property

Needs to be Regenerated if

Design or Property Changes

Uses IFT Logic to Track the

Write Data of a Single Controller

IFT Model

Input Output

Safety Properties

Original Design
(with Trigger

Modules)

2

3

Tortuga
Logic

Radix-S

5. Create a Testbench

Testbench
(Safety Verification)

Adequately Exercises the

Controllers being Verified

Testbench

Input Output

Existing Testbench
(Functional
Verification)

System
Integrato

rs

6. Verify Properties via Simulation

Input Output

Does not fail Fails one or more times
Simulated

Property

Evaluate Controller

and/or Previous Steps

Verification Results
(Logs, VCDs)

Original Design
(with Trigger

Modules)

2

IFT Models
4

Testbench
(Safety Verification)

5

Simulato
r

Conclusion

• Introduce the AXI bus stall problem

• Propose a safety verification methodology to identify the AXI bus stall
problem using:
• Simulation-based hardware information flow tracking

• A custom-developed, parametrizable Trigger Module

• Validate the methodology on SoC with fully-compliant AXI modules

• Future research:
• Expand the safety verification methodology to address other safety vulnerabilities

allowed for by AMBA AXI and other on-chip communication protocols

• Explore how other verification techniques (e.g., formal methods and standard
simulation-based methods) could be used to perform safety verification

Thank You!

