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In a Nutshell

• Introduce the AXI bus stall problem

• Propose a safety verification methodology to identify the AXI bus stall 
problem using:
• Simulation-based hardware information flow tracking

• A custom-developed, parametrizable Trigger Module

• Validate the methodology on SoC with fully-compliant AXI modules



System-on-Chip – Typical Architecture
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A typical modern SoC architecture (simplified)
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The AXI Bus Stall Problem
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Fully-compliant AXI controllers can delay their data provisioning for an unbounded time



The Safety Verification Flow
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1. Determine the Delay Limits
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2. Insert the Trigger Modules
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3. Specify the Safety Properties
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4. Generate the IFT Models
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5. Create a Testbench
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6. Verify Properties via Simulation
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Conclusion

• Introduce the AXI bus stall problem

• Propose a safety verification methodology to identify the AXI bus stall 
problem using:
• Simulation-based hardware information flow tracking

• A custom-developed, parametrizable Trigger Module

• Validate the methodology on SoC with fully-compliant AXI modules

• Future research:
• Expand the safety verification methodology to address other safety vulnerabilities 

allowed for by AMBA AXI and other on-chip communication protocols

• Explore how other verification techniques (e.g., formal methods and standard 
simulation-based methods) could be used to perform safety verification   
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