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DNN inference 
has a very 

predictable 
execution time!

DNN

Clockwork 
End-to-end predictable 
DNN serving platform 

for the Cloud  

✓Supports 1000s of models 
concurrently per GPU

✓Mitigates tail latency, supporting 
tight latency SLOs (10—100 ms)

✓Close to ideal goodput under 
overload, contention, and bursts
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Background



ResNet-50 Latency Throughput Cost
CPU 175 ms 6 req/s $
GPU 2.8 ms 350 req/s $$$

Requests arrive at different 
rates and regularity

Inference Serving at the Cloud Scale is Difficult
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1000s of trained models of different 
types and resource requirements

Problem 
How can cloud providers efficiently  

share resources while meeting SLOs?

Each request has an 
inherent deadline

Latency SLOs 
(e.g., 100ms)

GPU

HW accelerators 
are necessary!

GPU GPU

Time

Ra
te

Periodic

Bursty
Sustained + High RateArbitrary 
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Inference latency 
- 15 trained ResNet50 
- Single GPU worker 
- 16 concurrent 

requests per model

Existing Systems Incur Very High Tail Latency

95 ms

Tail latency 
within SLO

CDF
200 ms

Tail latency >> SLO

Concurrent 
DNN inference 
over GPU

100x

High variance 
in latency

Throughput 
gains only 25%

Clockwork adopts a 
contrasting approach!

Single-thread latency is 
extremely predictable

Preserves DNN 
predictability at every 
stage of model 
serving
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How does Clockwork Achieve 
End-to-End Predictability?
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Design Principles
Goal: 1000s of models, many users, limited resources 

Maximize sharing1. Predictable worker with no choices

2. Consolidating choices at a central controller

3. Deadline-aware scheduling for SLO compliance



Queues

RAM

GPU Memory

GPU Exec GPU
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Designing a Predictable Worker (1/2)

Worker Node

Unpredictable 
response times

Concurrent inferences
Proprietary & 
undocumented policies 

100x

32 GB

Managed memory 
can be unpredictable 

- GPU memory (cache) 
hits & misses

ResNet-50 — Hit: 2.3 ms | Miss: 10.6 ms

Users upload pre-trained models 
in advance:                       ... 

Inference request for 

Allocate memory for     ...Cold

Inference request for  
(execute, since already 
in GPU memory)

Warm

4 TB

Execute 
inference



Managed memory 
can be unpredictable

Solution 
Preallocate GPU memory & 
manage it explicitly using 
LOAD/UNLOAD actions

RAM

GPU Memory

GPU Exec GPU
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Designing a Predictable Worker (2/2)

Worker Node

PageCache

Earliest 
Deadline First

Time

GPU

Time

PCI

Unpredictable 
response times

Concurrent inferences
Proprietary & 
undocumented policies Solution 

Execute inference  
one at a time

Choices outsourced 
via action APIs

INFER (     , I/P, Deadline)

LOAD/UNLOAD (     , Deadline)

Predictable Clockwork 
worker process



...

Users

10

Consolidating Choices
Centralized 

Controller
Worker 
processes

RAM

GPU Memory

GPU Exec GPU

LOADs

INFERs

GPU 
Worker 
Node 
W1

PageCache

Global State Manager

Memory 
State

Latency 
Profiles

Pending 
Tasks

Smarter load balancing 
& scheduling decisions



Users
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SLO-aware Scheduling
Centralized 

Controller

...

Worker 
processes

RAM

GPU Memory

GPU Exec GPU

LOADs

INFERs

GPU 
Worker 
Node 
W1

PageCache

inferΔ

Time

W1 
GPU

tnow

tdeadlinetlatest
tdeadline

tfree

Pending Tasks

Inference request for  -

Inference request 
for  -

Deadline is 
further away

What if  -  does not 
finish on time?

From latency profiles

Since tfree + infer < tdeadline, inference 
request for  -  is scheduled on W1

Δ

Clockwork also tracks tlatest, and cancels  
-  if it fails to start before tlatest

Since tdeadline < tfree , inference 
request for  -  is cancelled

Many benefits 
- Prevent wasteful work 

- Manage LOAD  INFER dependencies 
- Choosing the best batching strategy

→
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Evaluation



Simple workloads in controlled settings

Questions

How does Clockwork compare to prior model serving systems Clipper and INFaaS?

Can Clockwork serve thousands of model instances?

How low can Clockwork go in terms of the latency SLOs it can satisfy?

Can Clockwork isolate the performance of latency-sensitive clients 
from batch requests without latency SLOs?

This talk

Are Clockwork workers predictable?

Can Clockwork controller Scale?

Does consolidating choice help achieve 
end-to-end predictability?

Workloads 
from 
production 
traces
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Experiment Setup
12 Workers: NVIDIA Tesla v100 GPU | 32 GB GPU Memory

Shahrad et al. “Serverless in the Wild: Characterizing 
and Optimizing the Serverless Workload at a Large 

Cloud Provider.”  USENIX ATC 2020

Microsoft’s Azure Functions Workload

4026 model instances

- Saturates 768 GB RAM

- 61 different model architectures

- ResNet, DenseNet, Inception, etc.

46,000 functions, 2 weeks

- Heavy sustained workloads

- Low utilization cold workloads

- Workloads with periodic spikes

- Bursty workloads

Time

Ra
te

1 Controller 1 Client
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Are Clockwork Workers Predictable?
Clockwork relies on predicting the model 

inference latency for scheduling
Overpredictions Idle resources

Underpredictions SLO violations

Clockwork consistently overpredicts 
more than its underpredicts

Underprediction error = 55us 
Overprediction error = 144us

Errors are significant only 
in extremely rare cases

Experiment duration = 6 hours,

Offered load ~ 10,000 r/s
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Does Consolidating Choice Help?
Offered load ~10,000 r/s, periodic spikes ~12,000 r/s

Latency SLO = 100 ms deadline for each request

The workload is successfully 
scheduled by Clockwork 

- Goodput  offered load

- Out of 208 million requests, only 

58 failed due to mispredictions

- All others completed within SLO

≈
Latency of all 
completed 
requests

Goodput = 
SLO compliant 
throughput

Batching prioritized, absorbs spikes

Many cold starts

Cold requests = 1.3% of all requests
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Does Clockwork Controller Scale?
Methodology 

- Replace GPU workers with 
emulated workers 

- From the controller’s vantage 
point, nothing changes 

- Measure the peak goodput 
as we vary #workers

40 emulated workers
Peak
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Does Clockwork Controller Scale?
Methodology 

- Replace GPU workers with 
emulated workers 

- From the controller’s vantage 
point, nothing changes 

- Measure the peak goodput 
as we vary #workers

Maximum goodput: 
103,387 r/s for 110 workers

Linear scalability until 
#workers = 110
Goodput limited by 
worker’s utilization

Bottleneck shifts 
to Clockwork



Summary
Key idea: DNN executions on GPUs exhibit negligible latency variability 

- Intuitive – DNN inferences involve no conditional branches – and demonstrable in practice

Clockwork: From DNN predictability to an E2E predictable DNN serving platform  
- Recursively ensures that all internal architecture components have predictable performance 
- Concentrating all choices in a centralized controller

Outperforms state-of-the-art DNN serving platforms 
- Efficiently fulfills aggressive tail-latency SLOs 
- Supports 1000s of DNN models with varying workload 

characteristics concurrently on each GPU

https://gitlab.mpi-sws.org/cld/ml/clockwork

https://gitlab.mpi-sws.org/cld/ml/clockwork

