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erving DNNs like Clockwork

Performance Predictability from the Bottom Up
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Inference Serving at the Cloud Scale is Difficult

1000s of trained models of different Requests arrive at different Each request has an HW accelerators
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Problem

How can cloud providers efficiently
share resources while meeting SLOs?
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How does Clockwork Achieve
End-to-End Predictability?



Design Principles

i Goal: 1000s of models, many users, limited resources |

1. Predictable worker with no choices | Maximize sharing

2. Consolidating choices at a central controller

3. Deadline-aware scheduling for SLO compliance
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Designing a Predictable Worker (1/2)
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Designing a Predictable Worker (2/2)

Choices outsourced = Predictable Clockwork

via action APIs
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Consolidating Choices
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SLO-aware Scheduling

Centralized
Controller
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Questions

,; How does Clockwork compare to prior model serving systems Clipper and INFaaS? '{
Can Clockwork serve thousands of model instances?
' How low can Clockwc'l'hiS talk's of the latency SLOs it can satisfy?

i Can Clockwork isolate the performance of latency-sensitive clients
i from batch requests without latency SLOs?

e < 2 S a sl By 4 el o » i o e Gl

Are Clockwork workers predictable? Workloads

| from
production

| traces

. Can Clockwork controller Scale? :

' Does consolidating choice help achieve
i end-to-end predictability?



Experiment Setup

12 Workers: NVIDIA Tesla v100 GPU | 32 GB GPU Memory + 1 Controller + 1 Client

Microsoft’s Azure Functions =8 46 000 functions, 2 weeks

Workload

Shahrad et al. “Serverless in the Wild: Characterizing - Heavy sustained workloads
and Optimizing the Serverless Workload at a Large - Low utilization cold workloads

- Workloads with periodic spikes
- Bursty workloads

Cloud Provider.” USENIX ATC 2020

4026 model instanCces afsmmmmmmdg
- Saturates 768 GB RAM
- 61 different model architectures
- ResNet, DenseNet, Inception, etc.

Rate
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Are Clockwork Workers Predictable?

Clockwork relies on predicting the model Overpredictions — Idle resources
inference latency for scheduling Underpredictions —— SLO violations
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Does Consolidating Choice Help?

Offered load ~10,000 r/s, periodic spikes ~12,000 r/s

Goodput = Latency SLO = 100 ms deadline for each request
SLO compliant

throughput )
ghp The workload is successfully

scheduled by Clockwork

Latency of all
completed - Goodput ~ offered load

requests _ . : - Out of 208 million requests, onl
Batching prioritized, absorbs spikes 58 failed due to misp?redictionsy

- All others completed within SLO

Many cold starts

Cold requests = 1.3% of all requests
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Does Clockwork Controller Scale?

40 emulated workers Methodology
- - Replace GPU k ith
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Does Clockwork Controller Scale?

Bottleneck shifts
,\120000 Linear scalability until ~  to Clockwork Methodology

H# k =11 - Replace GPU workers with
100000 #orkers =110

emulated workers
Goodput limited by

80000 worker’s utilization ="

- From the controller’s vantage
point, nothing changes

- Measure the peak goodput
as we vary #workers

Maximum goodput:
103,387 r/s for 110 workers

0O 20 40 60 80 100120140
Number of Workers
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ARTIFACT
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Clockwork: From DNN predictability to an E2E predictable DNN serving platform w

- Recursively ensures that all internal architecture components have predictable performance i | EVALUATED

- Concentrating all choices in a centralized controller & o ~sociation
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L

- Efficiently fulfills aggressive tail-latency SLOs

- Supports 1000s of DNN models with varying workload
characteristics concurrently on each GPU
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