
Reza Karimi Ymir Vigfusson

Arpan Gujarati Safya Alzayat Antoine Kaufman Jonathan Mace

Serving DNNs like Clockwork
Performance Predictability from the Bottom Up

Wei Hao

Serving DNNs like Clockwork
Performance Predictability from the Bottom Up

Pictures

Tags Music

Recommendations

Sensor Data

Health ReportReal-Time Inference

Cloud

Users

DNN inference
has a very

predictable
execution time!

DNN

Clockwork
End-to-end predictable
DNN serving platform

for the Cloud

✓Supports 1000s of models
concurrently per GPU

✓Mitigates tail latency, supporting
tight latency SLOs (10—100 ms)

✓Close to ideal goodput under
overload, contention, and bursts

3

Background

ResNet-50 Latency Throughput Cost
CPU 175 ms 6 req/s $
GPU 2.8 ms 350 req/s $$$

Requests arrive at different
rates and regularity

Inference Serving at the Cloud Scale is Difficult

4

1000s of trained models of different
types and resource requirements

Problem
How can cloud providers efficiently

share resources while meeting SLOs?

Each request has an
inherent deadline

Latency SLOs
(e.g., 100ms)

GPU

HW accelerators
are necessary!

GPU GPU

Time

Ra
te

Periodic

Bursty
Sustained + High RateArbitrary

5

Inference latency
- 15 trained ResNet50
- Single GPU worker
- 16 concurrent

requests per model

Existing Systems Incur Very High Tail Latency

95 ms

Tail latency
within SLO

CDF
200 ms

Tail latency >> SLO

Concurrent
DNN inference
over GPU

100x

High variance
in latency

Throughput
gains only 25%

Clockwork adopts a
contrasting approach!

Single-thread latency is
extremely predictable

Preserves DNN
predictability at every
stage of model
serving

6

How does Clockwork Achieve
End-to-End Predictability?

7

Design Principles
Goal: 1000s of models, many users, limited resources

Maximize sharing1. Predictable worker with no choices

2. Consolidating choices at a central controller

3. Deadline-aware scheduling for SLO compliance

Queues

RAM

GPU Memory

GPU Exec GPU

8

Designing a Predictable Worker (1/2)

Worker Node

Unpredictable
response times

Concurrent inferences
Proprietary &
undocumented policies

100x

32 GB

Managed memory
can be unpredictable

- GPU memory (cache)
hits & misses

ResNet-50 — Hit: 2.3 ms | Miss: 10.6 ms

Users upload pre-trained models
in advance: ...

Inference request for

Allocate memory for ...Cold

Inference request for
(execute, since already
in GPU memory)

Warm

4 TB

Execute
inference

Managed memory
can be unpredictable

Solution
Preallocate GPU memory &
manage it explicitly using
LOAD/UNLOAD actions

RAM

GPU Memory

GPU Exec GPU

9

Designing a Predictable Worker (2/2)

Worker Node

PageCache

Earliest
Deadline First

Time

GPU

Time

PCI

Unpredictable
response times

Concurrent inferences
Proprietary &
undocumented policies Solution

Execute inference
one at a time

Choices outsourced
via action APIs

INFER (, I/P, Deadline)

LOAD/UNLOAD (, Deadline)

Predictable Clockwork
worker process

...

Users

10

Consolidating Choices
Centralized

Controller
Worker
processes

RAM

GPU Memory

GPU Exec GPU

LOADs

INFERs

GPU
Worker
Node
W1

PageCache

Global State Manager

Memory
State

Latency
Profiles

Pending
Tasks

Smarter load balancing
& scheduling decisions

Users

11

SLO-aware Scheduling
Centralized

Controller

...

Worker
processes

RAM

GPU Memory

GPU Exec GPU

LOADs

INFERs

GPU
Worker
Node
W1

PageCache

inferΔ

Time

W1
GPU

tnow

tdeadlinetlatest
tdeadline

tfree

Pending Tasks

Inference request for -

Inference request
for -

Deadline is
further away

What if - does not
finish on time?

From latency profiles

Since tfree + infer < tdeadline, inference
request for - is scheduled on W1

Δ

Clockwork also tracks tlatest, and cancels
- if it fails to start before tlatest

Since tdeadline < tfree , inference
request for - is cancelled

Many benefits
- Prevent wasteful work

- Manage LOAD INFER dependencies
- Choosing the best batching strategy

→

12

Evaluation

Simple workloads in controlled settings

Questions

How does Clockwork compare to prior model serving systems Clipper and INFaaS?

Can Clockwork serve thousands of model instances?

How low can Clockwork go in terms of the latency SLOs it can satisfy?

Can Clockwork isolate the performance of latency-sensitive clients
from batch requests without latency SLOs?

This talk

Are Clockwork workers predictable?

Can Clockwork controller Scale?

Does consolidating choice help achieve
end-to-end predictability?

Workloads
from
production
traces

14

Experiment Setup
12 Workers: NVIDIA Tesla v100 GPU | 32 GB GPU Memory

Shahrad et al. “Serverless in the Wild: Characterizing
and Optimizing the Serverless Workload at a Large

Cloud Provider.” USENIX ATC 2020

Microsoft’s Azure Functions Workload

4026 model instances

- Saturates 768 GB RAM

- 61 different model architectures

- ResNet, DenseNet, Inception, etc.

46,000 functions, 2 weeks

- Heavy sustained workloads

- Low utilization cold workloads

- Workloads with periodic spikes

- Bursty workloads

Time

Ra
te

1 Controller 1 Client

15

Are Clockwork Workers Predictable?
Clockwork relies on predicting the model

inference latency for scheduling
Overpredictions Idle resources

Underpredictions SLO violations

Clockwork consistently overpredicts
more than its underpredicts

Underprediction error = 55us
Overprediction error = 144us

Errors are significant only
in extremely rare cases

Experiment duration = 6 hours,

Offered load ~ 10,000 r/s

16

Does Consolidating Choice Help?
Offered load ~10,000 r/s, periodic spikes ~12,000 r/s

Latency SLO = 100 ms deadline for each request

The workload is successfully
scheduled by Clockwork

- Goodput offered load

- Out of 208 million requests, only

58 failed due to mispredictions

- All others completed within SLO

≈
Latency of all
completed
requests

Goodput =
SLO compliant
throughput

Batching prioritized, absorbs spikes

Many cold starts

Cold requests = 1.3% of all requests

17

Does Clockwork Controller Scale?
Methodology

- Replace GPU workers with
emulated workers

- From the controller’s vantage
point, nothing changes

- Measure the peak goodput
as we vary #workers

40 emulated workers
Peak

18

Does Clockwork Controller Scale?
Methodology

- Replace GPU workers with
emulated workers

- From the controller’s vantage
point, nothing changes

- Measure the peak goodput
as we vary #workers

Maximum goodput:
103,387 r/s for 110 workers

Linear scalability until
#workers = 110
Goodput limited by
worker’s utilization

Bottleneck shifts
to Clockwork

Summary
Key idea: DNN executions on GPUs exhibit negligible latency variability

- Intuitive – DNN inferences involve no conditional branches – and demonstrable in practice

Clockwork: From DNN predictability to an E2E predictable DNN serving platform
- Recursively ensures that all internal architecture components have predictable performance
- Concentrating all choices in a centralized controller

Outperforms state-of-the-art DNN serving platforms
- Efficiently fulfills aggressive tail-latency SLOs
- Supports 1000s of DNN models with varying workload

characteristics concurrently on each GPU

https://gitlab.mpi-sws.org/cld/ml/clockwork

https://gitlab.mpi-sws.org/cld/ml/clockwork

