

zenoh

A Next-Generation Protocol for IoT and Edge Computing

Frédéric Desbiens
Program Manager — IoT and Edge Computing
@BlueberryCoder

July 10, 2022

COPYRIGHT (C) 2022, ECLIPSE FOUNDATION | THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC BY 4.0)

Common Protocols at the Edge

CoAP	DDS	LwM2M	OPC UA	MQTT
Request / Response	Publish / Subscribe	Request / Response	It's complicated	Publish / Subscribe
Client / Server	Peer-to-Peer	Client / Server		Brokered

Common Edge Protocol Implementations

CoAP

Eclipse Californium

Eclipse Cyclone DDS

DDS

LwM2M

Eclipse Leshan Eclipse Wakaama **OPC UA**

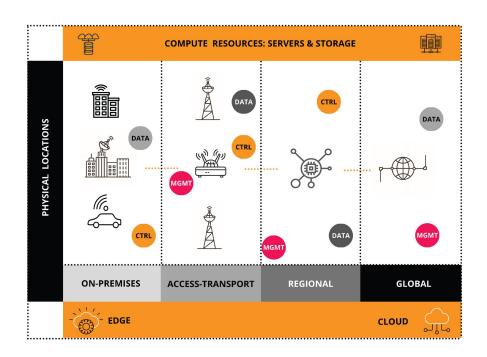
Eclipse Milo

MQTT

Eclipse Amlen Eclipse Mosquitto Eclipse Paho

Common Edge Protocols: Criticisms

CoAP	DDS	LwM2M	OPC UA	MQTT
Longer transmission	Implementations often incompatible	Tied to CoAP and UDP	Complex; spec is several thousand pages long	Tied to TCP
times DTLS has limitations	Routing over the public		Six transports; 200+ facets. Interoperability is	MQTT-SN is a different protocol
	internet is tricky		a challenge	


The Journey of Data

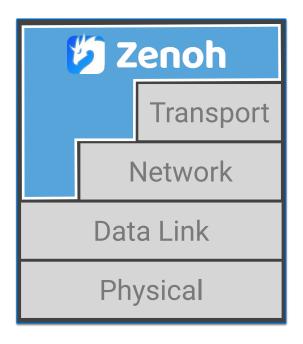
3. Computation and 1. Capture 2. Transmission 4. Retrieval storage Sensors capture data at Data is transmitted from Data is stored as is or Data is retrieved, often for further processing the edge the edge to its after computation destination Opportunity Existing protocols do not care about computation, storage and retrieval

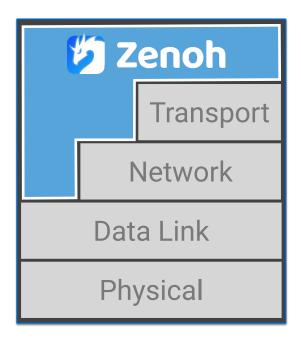
The Edge-To-Cloud Continuum

loT solutions, whether they leverage edge computing or not, leverage a continuum of compute, storage and communication ressources spanning from the microcontroller to the Cloud

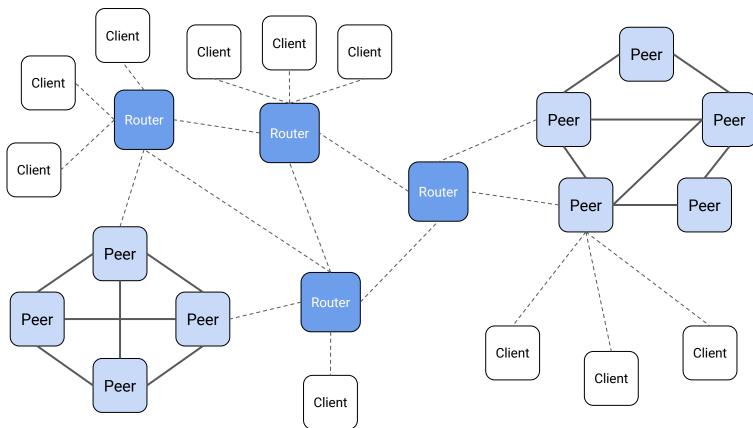
zenoh

- Unifies data in motion, data in-use, data at rest and computations
- > Blends traditional pub/sub with distributed queries
- Built-in support for geo-distributed storage and distributed computations




What Is zenoh?

- Unifies data in motion, data in-use, data at rest and computations
- Provides a location-transparent API for high performance pub/sub and distributed queries
- Facilitates data representation transcoding, geo-distributed storage and distributed computed values


Zenoh Technical Highlights

- Efficient protocol (bandwidth, power consumption, memory usage) with support for extremely constrained targets
- Supports push and pull pub/sub along with distributed queries
- Resource keys are represented as integers on the wire (these integers are local to a session)
- > Support for peer-to-peer and routed communication
- Support for zero-copy
- Ordered reliable data delivery and fragmentation
- Minimal wire overhead for user data is 5 bytes

Node Types and Topology

Naming Data

Following the tradition of Named Data Networking protocols, data is identified by a **key** (sequence of byte arrays)

```
/fleet/CA/robot/1/pointcloud
/home/kitchen/sensors/C202
```

Data interest and intents are expressed by means of **keys regular expressions**, such as:

```
/fleet/FR/robot/**
/camera/FR/*/image
```


Selecting Data

Uses selector to defines data sets. A selector is composed by a key expression, and optionally a predicate, a projection and a set of properties

```
/fleet/*/robot/*/sensor/temp?value>25
/mycar/dynamics?speed>25#acceleration
```

The key-expression is used to route the query, while predicate, properties, projection, etc., are interpreted only by the entity that executes the query. It also provide different policies to control query consolidation and completeness and potentially quorums

Primitives: Entities

Resource Named data item (key,value)

/fleet/CA/robot/1867/sensor/temp, 21.5 /fleet/FR/robot/1789/sensor/hum, 0.67

Publisher Spring of values for a key expression

/fleet/CA/robot/1867/sensor/temp

/fleet/*/robot/*/halt

Subscriber Sink of values for a key expression

/fleet/CA/robot/1867/sensor/temp
/fleet/FR/robot/1789/sensor/*

Queryable Well of values for a key expression

/fleet/CA/**

Primitives: Operations

scout Looks for zenoh entities on the network. The type of node (peers,

router, etc.) is specified through a bitmask

open/close Open/Close a zenoh.net session

declare/undeclare Declare/Undeclare resources, publishers, subscribers and queryables.

For subscribers the declare primitive registers a user provided callback that will be triggered when data is available.

For queryable, the declare primitive register a user provided callback triggered whenever a query needs to be answered.

Primitives: Operations (2)

write Writes data for a key expression.

pull Pulls data for a pull subscriber.

query Issues a distributed query and returns a stream of results. The

query target, coverage and consolidation depends on policies

Storage

A storage is defined by:

Selector
Defines the set of resources keys hosted by this storage

> Backend

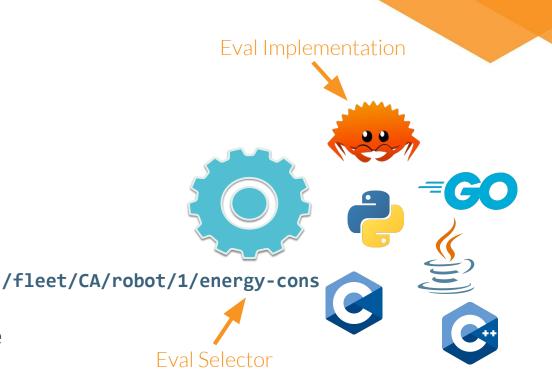
Defines the storage technology used. Available choices include: filesystem, InfluxDB, in-memory (hashmap), RocksDB and SQL (SQLITE3, MariaDB, PostgreSQL) zenoh storages can be created via the administration API anywhere on the network and back-ends are dynamically loaded plugins.

Storage Back-end

Storage Selector

zenoh storages can be standalone or bound to existing databases

Eval


An eval is defined by:

Selector

Defines the set of resources keys that will trigger this computation

Implementation

The user code implementing the computation

zenoh-pico

- Targets constrained devices
- Offers a C API for pure clients
- No support for peer-to-peer communications
- > Zephyr support

In Action **Storage Subscriber Publisher** fleet/FR/position/* /fleet/CA/robot/** /fleet/CA/robot/1/pointcloud /camera/CA/*/image [7] **Publisher** Peer /fleet/CA/position/* Client Subscriber Peer Peer /fleet/FR/robot/** /camera/FR/*/image Client **Publisher** /fleet/FR/position/* Peer Peer Peer Client Client Peer Peer **Publisher** Peer /camera/CA/1/image Subscriber Storage Client /fleet/CA/robot/3/halt Client /fleet/CA/position/* Client Subscriber /fleet/FR/robot/1/halt Publisher /fleet/FR/robot/1/pointcloud **Publisher Publisher**

/fleet/*/robot/*/halt

/camera/FR/1/image

Delivering Open Source Edge Platforms. Now.

EDGE NATIVE

Code first

Simplify and streamline production Edge deployments

EdgeOps

EdgeOps Adapting DevOps for the Edge

Challenges

- Latency
- Bandwidth
- Resiliency
- Data sovereignty

Characteristics

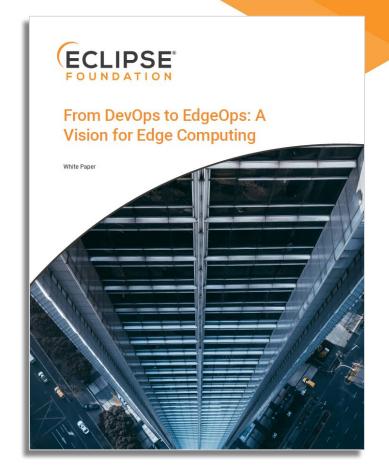
- Long lifespan
- Heterogeneous
- Constraints
- Connectivity

Deployment

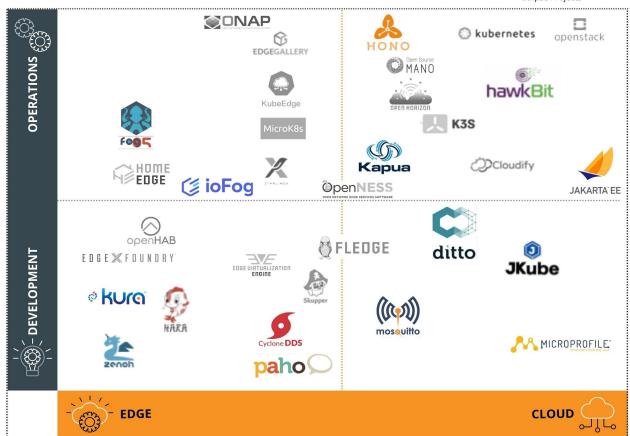
- Workloads
- Artifacts
- Strategies

DevOps Principles

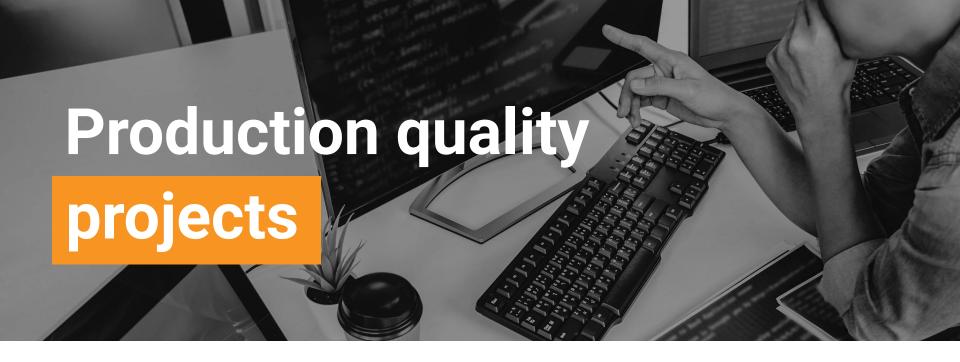
Short Lifecycle, Collaboration, Continuous Integration and Delivery (CI/CD), Microservices, Infrastructure as Code



Download the White Paper



https://hubs.la/H0L379c0



Thank You

Frédéric Desbiens @BlueberryCoder

@EdgeNativeWG
edgenative.eclipse.org

