a

> U) AUTOMATION

Priority-Driven Real-Time Scheduling in ROS 2:
Potential and Challenges

Hyunjong Choi, Daniel Enright, Hoora Sobhani,

Yecheng Xiang, and Hyoseung Kim

Real-time Embedded R I V E R s I D E
and Networked Systems

Il

Networl
Laborator

ROS

* One of the most prevalent robotic middleware frameworks
- Predictable end-to-end behavior of systems is essential for robotic applications

Galactic Geochelone,
released May 2021

» Revealed shortcomings in real-time support for safety-critical applications

lll]
N, []
) s ~ .
o Localization Llnien
o (00 0] Planning
Application JEn. I Y S 1
e Pl ; teering
g g " . LiDAR Detection —
ROS " T 5
: Camera Prediction —>[Intelligence Acceleration
I \. J -~
. Shared memory Aut hicl Shared memory
y utonomous venicle
:
GPU FPGAs M _ . . .)
L}
Many/Multicores .II:

< Example of ROS-based robotic framework
(Autoware.Ai) > 1

DESIGN

» Violating timing constraints (e.g., end-to-end
AUTOMATION

latency) can cause catastrophic accidents.

1S. Kato et al. “Autoware on Board: Enabling Autonomous Vehicles with Embedded Systems”, ICCPS, 2018

Limitations of current ROS 2

Priority-unaware complex layers of abstractions
Round-robin like callback scheduling behavior
Prone to priority inversion

. Ignores criticality or urgency of processing chains

Lack of systematic support for resource allocation
All nodes compete for resources in a nondeterministic way

. Long end-to-end latency and poor resource utilization

» We need a priority-driven paradigm for real-time support in ROS 2!

¢

AUTOMATION

Priority-driven scheduling framework for ROS 2

Priority-driven chain-aware scheduling (PICAS)T: enables prioritization of critical
computation chains across complex abstraction layers of ROS 2

Minimizes end-to-end latency
Ensures predictability even when the system is overloaded

= Strategies for chains running within an executor ol i et gy

Regular callbacks only Timer and regular callbacks

j < Node-to-Executor
: allocation >

Strategy 1. (To satisfy @ of Lemma 1) Strategy I1. (To satisfy @ of Lemma 1)

Single hain G- HoH)
— —

Multiple Strategy III. Chain1 StrategyIV. o . Chain 1

= Strategies for chains running across executors

Step 1: Computing the WCRT of each segment of a chain

WCRT of a scgment ®;, R2;

A 4

Step 2: Adding the WCRT of all segments of the chain

Single chain on one CPU Multiple chains on one CPU
Strategy V. (To satisfy @ of Lemma 1) Strategy VI.

} or L] or | | End-to-end latency of a chain, Lic
—p- —d Algorithm 1 Callback priority assignment + < E d d . - I .
< C h ai n 'aWare Sched u | i n g Strateg ieS > h?lll‘n::sn:‘:dil;:\u.\ccmling order of T',"fml,ir priority 7 n -to-e n tl m I n g an a ySIS
i If:):a;l I o Initialize current priority >

pep+l
end for

< Priority assignment > ‘i

DESIGN
AUTOMATION

TH. Choi et al. "PiCAS: New design of priority-driven chain-aware scheduling for ROS2." RTAS, 2021.

PICAS on the reference system (1/2)

- We mtegrated PICAS into the open source reference systemt for evaluation

Visualizer | | Lanelet2 Map |

T .
__ ii | Vehicle DBW System |

> > : Criticality of chains _1: hot topic path (latency is the one of KPIs)

< Autoware model of the reference system >

- Evaluation criteria: Key Performance Indicators (KPIs)
Average end-to-end latency of hot topic path
Number of dropped messages

Jitter of periodic node, e.g., Behavior Planner DESIGN

AUTOMATION

TROS2 Real-Time Working Group. Reference system. https://github.com/ros-realtime/reference-system

https://github.com/ros-realtime/reference-system

PICAS on the reference system (2/2)

Evaluation environment
Raspberry Pi 4 with a fixed CPU frequency of 1.5GHz
4 CPU cores for multiple executors (ROS2-PiCAS) and multi-threaded executor (ROS2-default)

— (] L5] - n
=]
= =]

Average latency [msec]

= 86%0
- = —
| | | |
Singlethreaded Single executor Multithreaded Multiple executors

(ROS2-default)

(ROS2-PiCAS)

(ROS2-defaulr)

(ROS2-PiCAS)

< End-to-end latency of hot topic path >

Single-threaded
(ROS2-default)

Singlethreaded Single executor Multithreaded Multi. executors
(ROS2-default) (ROS2-PiCAS) (ROS2-default) (ROS2-PiCAS)
Mean 0.8681 0.0282 0 0
STD 0.3347 0.1651 0 0

< Number of dropped messages >

Multi-threaded
(ROS2-default)

< Behavior Planner jitter >

Single executor
(ROS2-PiCAS)

Multiple executors
(ROS2-PiCAS)

a

AUTOMATION

Real-time support for multi-threaded executors

Challenges
Runtime callback distribution across multiple threads
Unsynchronized polling points of the threads

» Existing ROS 2 analyses are not directly applicable to multi-threaded executors

Our ongoing efforts

Develop real-time analysis for the default multi-threaded executors of ROS 2

Revise conventional non-preemptive global scheduling analysis by considering semantic
differences, e.g., callback dependencies, chains, polling points, and ready set management

Extend PICAS to multi-threaded executors
Enable priority-driven scheduling for better end-to-end latency and predictability

Explore the effects of callback groups, e.g., mutually-exclusive vs. reentrant

a

AUTOMATION

Real-time GPU acceleration

Challenges
Asynchronous and unstructured models for kernel execution on GPU accelerators
Blocking time and priority inversion by GPU kernel execution from low-priority chains

» Unpredictable real-time behavior of ML/Al workloads

Our ongoing efforts
Build a GPU server node in the ROS 2 software stack
Priority-driven control of GPU requests to shared hardware accelerators
Concurrent kernel execution with real-time spatial multitasking and prioritized CUDA streams

Develop an architecture to support a low-overhead accelerator resource management
framework

Minimizing data copy delays with efficient zero-copy IPC methods,

e.g., lceoryx (
o

AUTOMATION

Conclusion & Future work

Conclusion

Presented the benefit of enabling priority-driven scheduling in the ROS 2
framework

Integrated our PICAS framework into the reference system

Demonstrated that PICAS outperforms the existing ROS 2 scheduling scheme
w.r.t. key performance indicators, e.g., average end-to-end latency, dropped
messages, and |jitter of periodic node, under practical scenarios

Discussed challenges and issues for multi-threaded executors and real-time
support of ROS 2 with shared accelerators

Future work

Evaluate the effectiveness of PICAS against other executors,

e.g., chg executor 6
. ") AUTOMATION

Q&A

Priority-Driven Real-Time Scheduling in ROS 2:
Potential and Challenges

ROS 2 PICAS source
https://github.com/rtenlab/ros2-picas

PICAS with the reference system
https://github.com/rtenlab/reference-system

a

AUTOMATION

https://github.com/rtenlab/ros2-picas
https://github.com/rtenlab/reference-system

