
Proceedings of

RAGE 2022
The 1st Real-time And intelliGent Edge computing workshop

July 10th, 2022, San Francisco, CA, USA

In conjunction with

The 59th Design and Automation Conference
July 10-14, San Francisco, CA, USA

Proceedings Edited by:

Daniel Casini
Dakshina Dasari
Matthias Becker

the organizers and program chairs of RAGE 2022.



Message from the Chairs

Welcome to the first edition of the Real-Time And intelliGent Edge computing workshop (RAGE 2022), which is
held in conjunction with the 59th edition of the Design and Automation Conference (DAC 2022). The workshop
takes place in San Francisco, California, USA, on July 10th, 2022. The workshop is composed of nine high-
end invited speakers and eight papers. Invited speakers are Anthony Rowe from the Carnegie Mellon University,
Arne Hamann from Bosch, Joerg Seitter from ETAS, Giorgiomaria Cicero from Accelerat Srl, Frédéric Desbiens
from the Eclipse Foundation, Pratham Oza from NuroAI, Arpan Gujarati from the University of British Columbia,
Hana Khamfroush from the University of Kentucky, and Mohammad Al Faruque from the University of California
at Irvine. Among the eight papers, two of them are invited contributions. The first one is from Matteo Maria
Andreozzi and Girish Shirasat from ARM, and the second one is from Hyunjong Choi, Daniel Enright, Hoora
Sobhani, Yecheng Xiang, and Hyoseung Kim from the University of California at Riverside. All contributions
discuss different aspects of edge computing, such as resource allocation, communication protocols, industrial use
cases for edge computing, and others.

Two contributions from the open call for papers have been awarded the best paper and best presentation awards.
The best paper award has been given to the paper titled Minimal-Overlap Centrality Driven Designation for Real-

Time TSCH Networks, by Miguel Gutiérrez Gaitán, Pedro d’Orey, Pedro Santos, and Luís Almeida. The best
presentation award has been given to Andres Meza for the presentation of the paper titled Safety Verification of

Third-Party Hardware Modules via Information Flow Tracking, authored by Andres Meza, Francesco Restuccia,
Ryan Kastner, and Jason Oberg.

RAGE 2022 would not have been possible without the support of many people. We thank the DAC 2022 Executive
Committee and Chia-Lin Yang, the 59th DAC Workshop Chair, which agreed to host this first edition in conjunction
with DAC. We particularly thank Chia-Lin Yang and Alexis Bauer Kolak for their support in the organization of
the workshop. We thank the authors and invited speakers for providing exciting talks and the RAGE 2022 program
committee for reviewing papers and providing helpful feedback to authors. We finally thank the audience of the
workshop for their interest and for the questions and discussion.

As the first edition of a new workshop, we hope this will give rise to a successful series of editions on an emerging
and stimulating research topic.

The Workshop Chairs,

Daniel Casini
Scuola Superiore Sant’Anna,
Pisa, Italy

Dakshina Dasari
Robert Bosch GmbH,
Renningen, Germany

Matthias Becker
KTH Royal Institute of Technology,

Stockholm, Sweden



Program Committee

Takuya Azumi, Saitama University, Japan

Alessio Balsini, Google, UK

Soroush Bateni, University of Texas at Dallas, USA

Tobias Blass, Apex.AI

Giorgio Buttazzo, Scuola Superiore Sant’Anna, Italy

Albert Cheng, University of Houston, USA

Hyunjong Choi, University of California at Riverside, USA

Xiaotian Dai, University of York, UK

Zheng Dong, Wayne State University, USA

Pierfrancesco Foglia, University of Pisa, Italy

Gabriel Parmer, George Washington University, USA

Miguel Gutiérrez Gaitán, CISTER, Portugal

Naresh Nayak, Robert Bosch GmbH, Germany

Alessandro Vittorio Papadopoulos, Mälardalen University, Sweden

Paolo Pazzaglia, Universität des Saarlandes, Germany

Carlo Puliafito, University of Pisa, Italy

Francesco Restuccia, UC San Diego, CA, USA

Juan M. Rivas, Universidad de Cantabria, Spain

Claudio Scordino, Evidence Srl, Italy

Biruk B. Seyoum, Columbia University, USA

Publicity Chair

Francesco Restuccia, UC San Diego, CA, USA

Web Chair

Gabriele Serra, Scuola Superiore Sant’Anna, Pisa, Italy



AGENDA 

WORKSHOP PROGRAM 

Sunday, 10th July 2022 - Morning session 

08:00-

08:10 
Welcome message from the chairs 

08:10-

08:40 

Invited Talk: 
 Lightweight virtualization for giving the cloud an edge 

 Prof. Anthony Rowe, 
 Carnegie Mellon University, USA 

08:40-

09:25 
Session 1: Tools, architectures, and resource allocation for the edge. 

08:40-

08:55 

MArK8s - A Management Toolchain Approach for Automotive Real-Time Kubernetes Containers 

in the Mobile Edge Cloud [  ] 
Bernhard Blieninger, Aaron Dietz and Uwe Baumgarten 

08:55-

09:10 

Towards a Predictable and Cognitive Edge-Cloud Architecture for Industrial Systems [  ] 
Mohammad Ashjaei, Saad Mubeen, Masoud Daneshtaalb, Victor Casamayor and Geoffrey Nelissen 

 

09:10-

09:25 

RT-SCALER: Adaptive Resource Allocation Framework for Real-Time Containers [  ] 
Vaclav Struhar, Silviu S. Craciunas, Mohammad Ashjaei, Moris Behnam and Alessandro Papadopoulos 

 

09:25-

09:40 
Short Break 

09:40-

10:10 

Invited Talk: 
 Industrial use-cases for real-time edge-computing 

 Dr. Arne Hamann, 
 Bosch Corporate Research, Germany 

10:10-

10:40 
Session 2: Invited speakers with papers. 

10:10-

10:25 

High-performance real-time systems design from cloud to embedded edge. [  ] 

Matteo Andreozzi and Girish Shirasat, ARM. 

PRESENTED BY 

 Dr. Girish Shirasat, 
 ARM, UK 

10:25-

10:40 

Priority-Driven Real-Time Scheduling in ROS2: Potential and Challenges [  ] 

Hyunjong Choi, Daniel Enright, Hoora Sobhani, Yecheng Xiang and Hyoseung Kim. 
PRESENTED BY 

 Dr. Hyunjong Choi, 
 University of California at Riverside, USA 

10:40-
10:55 

Short Break 

10:55-

11:25 
Invited Talk: 
 Giving the Software Defined Vehicle an Edge 

https://rage2022.github.io/speakers/#rowe-anthony
https://www.cmu.edu/
https://rage2022.github.io/speakers/#hamann-arne
https://www.bosch.com/research/
https://rage2022.github.io/speakers/#shirasat-girish
https://www.arm.com/
https://rage2022.github.io/speakers/#choi-hyunjong
https://www.ucr.edu/


 Joerg Seitter, 
 ETAS, Germany 

11:25-

11:55 

Invited Talk: 
 The role of virtualization at the edge for mixed-criticality applications 

 Giorgiomaria Cicero, 
 Accelerat S.R.L., Italy 

11:55-

12:55 
Lunch 

  

Sunday, 10th July 2022 - Afternoon session 

12:55-

13:25 

Invited Talk: 
 zenoh: A Next-Generation Protocol for IoT and Edge Computing 

 Dr. Frédéric Desbiens, 
 Eclipse Foundation, Canada 

13:25-

14:10 
Session 3: Real-time networks, safety, and queueing delays. 

13:25-

13:40 
Minimal-Overlap Centrality-Driven Gateway Designation for Real-Time TSCH Networks [  ] 
Miguel Gutiérrez Gaitán, Pedro d'Orey, Pedro Santos and Luís Almeida 

13:40-

13:55 

No-more-unbounded-blocking queues: bounding transmission latencies in real-time edge 

computing [  ] 
Gabriele Serra and Pietro Fara 

 

13:55-

14:10 

Safety Verification of Third-Party Hardware Modules via Information Flow Tracking [  ] 
Andres Meza, Francesco Restuccia, Ryan Kastner and Jason Oberg 

 

14:10-

14:25 
Short Break 

14:25-

14:55 

Invited Talk: 
 Deadline-Aware Task Offloading for Vehicular Edge Computing Networks 

 Dr. Pratham Oza, 
 Nuro Inc., USA 

14:55-

15:25 

Invited Talk: 
 Serving DNNs like Clockwork: Performance Predictability from the Bottom Up 

 Dr. Arpan Gujarati, 
 University of British Columbia, Canada 

15:25-

15:40 
Short Break 

15:40-

16:10 

Invited Talk: 
 QoS-aware resource management for Edge-AI 

 Prof. Hana Khamfroush, 
 University of Kentucky, USA 

16:10-

16:40 
Invited Talk: 
 Low power Machine Learning Techniques for Edge-AI 

https://rage2022.github.io/speakers/#seitter-joerg
https://www.etas.com/en
https://rage2022.github.io/speakers/#cicero-giorgiomaria
https://accelerat.eu/
https://rage2022.github.io/speakers/#desbiens-frederic
https://www.eclipse.org/org/
https://rage2022.github.io/speakers/#oza-pratham
https://www.nuro.ai/
https://rage2022.github.io/speakers/#gujarati-arpan
https://www.ubc.ca/
https://rage2022.github.io/speakers/#khamfroush-hana
https://uky.edu/


 Prof. Mohammad Al Faruque, 
 University of California at Irvine (UCI), USA 

16:40-

17:10 
Panel Discussion 

17:10-

17:30 
Closing Remarks 

 

https://rage2022.github.io/speakers/#al-faruque-mohammad
https://uci.edu/




CONTENTS

Invited talks.
1 Anthony Rowe,Carnegie Mellon University, USA

Lightweight virtualization for giving the cloud an edge
2 Arne Hamann, Bosch Corporate Research, Germany

Industrial use-cases for real-time edge-computing
3 Joerg Seitter, ETAS, Germany

Giving the Software Defined Vehicle an Edge
4 Giorgiomaria Cicero, Accelerat S.R.L., Italy

The role of virtualization at the edge for mixed-criticality applications
5 Frédéric Desbiens, Eclipse Foundation, Canada

zenoh: A Next-Generation Protocol for IoT and Edge Computing
6 Pratham Oza, Nuro Inc., USA

Deadline-Aware Task Offloading for Vehicular Edge Computing Networks
7 Arpan Gujarati, University of British Columbia, Canada

Giving the Software Defined Vehicle an Edge
8 Hana Khamfroush, University of Kentucky, USA

QoS-aware resource management for Edge-AI
9 Mohammad Al Faruque, University of California Irvine, USA

Low power Machine Learning Techniques for Edge-AI

Session 1: Tools, architectures, and resource allocation for the edge.
10 Bernhard Blieninger, Aaron Dietz, Uwe Baumgarten

Mark8s - A Management Approach for Real-Time Kubernetes Containers in the Mobile Edge Cloud
15 Mohammad Ashjaei, Saad Mubeen, Masoud Daneshtalab, Victor Casamayor, Geoffrey Nelissen

Towards a Predictable and Cognitive Edge-Cloud Architecture for Industrial Systems
19 Vaclav Struhar, Silviu S. Craciunas, Mohammad Ashjaei, Moris Behnam, Alessandro V. Papadopoulos

RT-SCALER: Adaptive Resource Allocation Framework for Real-Time Containers

Session 2: Invited speakers with papers.
23 Matteo Maria Andreozzi, Girish Shirasat

High-performance real-time systems design from cloud to embedded edge
28 Hyunjong Choi, Daniel Enright, Hoora Sobhani, Yecheng Xiang, Hyoseung Kim

Priority-Driven Real-Time Scheduling in ROS 2: Potential and Challenges

Session 3: Real-time networks, safety, and queueing delays.
32 Miguel Gutierrez Gaitan, Pedro M. d’Orey, Pedro M. Santos, Luis Almeida

Minimal-Overlap Centrality-Driven Gateway Designation for Real-Time TSCH Networks
36 Gabriele Serra, Pietro Fara

No-more-unbounded-blocking queues: bounding transmission latencies in real-time edge computing
41 Andres Meza, Francesco Restuccia, Ryan Kastner, and Jason Oberg

Priority-Driven Real-Time Scheduling in ROS 2: Potential and Challenges





Invited Talk 

Lightweight virtualization for giving the cloud an edge 

Prof. Anthony Rowe, 

Carnegie Mellon University, USA 

 

Prof. Anthony Rowe is the Siewiorek and Walker Family Professor in the Electrical and Computer Engineering 

Department at Carnegie Mellon University. His research interests are in networked real-time embedded systems 

with a focus on wireless communication. He has worked on topics including large-scale sensing for critical 

infrastructure monitoring, indoor localization, building energy-efficiency and technologies for microgrids. His 

most recent work has looked at connecting embedded sensing systems with mixed reality and spatial computing 

platforms. He is currently the director of the SRC/DARPA sponsored CONIX Research Center which spans 

seven Universities with the goal of exploring future distributed computing architectures. His past work has led to 

dozens of hardware and software systems, seven best paper awards, talks at venues like the World Economic 

Forum in Davos and several widely adopted open-source research platforms. He earned a Ph.D in Electrical and 

Computer Engineering from CMU in 2010, received the Lutron Joel and Ruth Spira Excellence in Teaching 

Award in 2013, the CMU CIT Early Career Fellowship and the Steven Fenves Award for Systems Research in 

2015 and the Dr. William D. and Nancy W. Strecker Early Career chair in 2016. 

1



Invited Talk 

Industrial use-cases for real-time edge-computing  

Dr. Arne Hamann, 

Bosch Corporate Research, Germany 

 

Dr. Arne Hamann (Bosch) obtained his PhD in Computer Science in 2008 from the Technical University of 

Braunschweig Germany. He is Chief Expert for "Distributed Intelligent Systems" at Bosch Corporate Research. 

Like the Bosch product portfolios his range of actives is very broads encompassing complex embedded systems 

where the interaction between physical processes hardware and software plays a major role through to 

distributed IoT systems with elements of (edge) cloud computing. In the academic contexts he is member of the 

editorial board of the ACM journal “Transactions on Cyber Physical Systems” and regularly serves as program 

committee member for international conferences such as ECRTS, RTSS, RTAS, DAC, EMSOFT, and ICCPS. 

2



Invited Talk 

Giving the Software Defined Vehicle an Edge 
Joerg Seitter, 

ETAS, Germany 

 

Joerg is heading the advance engineering of ETAS with a focus on Reliable Distributed Systems. In former roles 

within the Bosch group, he was working in Automotive Software and System Architecture and lead the 

development of high-performance ECUs for powertrain systems. Before Bosch he was working at IBM and has 

a deep history in large scale database systems technology and holds a lecture on this topic at University of 

applied science Esslingen. He holds a B.Eng. from University of applied Science Esslingen and a M.Sc. Degree 

from Brunel University London. 

3



Invited Talk 

The role of virtualization at the edge for mixed-criticality applications 
Giorgiomaria Cicero, 

Accelerat S.R.L., Italy 

  

Giorgiomaria Cicero is CEO at Accelerat Srl (https://accelerat.eu/) and Senior Research Fellow at the Real-Time 

Systems (ReTiS) Laboratory of the Scuola Superiore Sant’Anna of Pisa. Accelerat is a spin-off company of 

Scuola Superiore Sant'Anna focused on software solutions for safe, secure, and time-predictable cyber-physical 

systems. The company was born as a technology transfer effort from the ReTiS Laboratory of Scuola Superiore 

Sant'Anna, one of the world’s leading research teams in the area of embedded real-time systems. Giorgiomaria 

has a B.Sc. in Computer Engingeering, M.Sc. in Embedded Computing Systems, and has been visiting trainee at 

the European Space Agency (ESTEC, Netherlands). His research interests include software predictability in 

multi-processor systems and heterogeneous platforms, system-level cyber-security hardening techniques, and 

design and implementation of real-time operating systems and hypervisors. 

4



Invited Talk 

zenoh: A Next-Generation Protocol for IoT and Edge Computing 
Frédéric Desbiens, 

Eclipse Foundation, Canada 

  

Frédéric Desbiens manages IoT and Edge Computing programs at the Eclipse Foundation. His job is to help the 

community innovate by bringing devices and software together. He is a strong supporter of open source. He 

worked as a product manager, solutions architect, and developer for companies as diverse as Pivotal, Cisco, and 

Oracle. Frédéric holds an MBA in electronic commerce, a BASc in Computer Science, and a BEd, all from 

Université Laval. 

 

5



Invited Talk 

Deadline-Aware Task Offloading for Vehicular Edge Computing Networks 
Dr. Pratham Oza, 

Nuro Inc., USA 

   

Dr. Pratham Oza has a Ph.D. from Virginia Tech with research interests in cyber-physical systems and 

intelligent transportation with focuses on hardware/ software co-design of systems in the intersection of real-time 

systems and autonomous transportation. Pratham currently works as a Systems Engineer at Nuro with their 

autonomy division. Pratham has multiple academic and industry research collaborations and has won a Best 

Paper Award at IEEE RTCSA 2019. He is currently interested in analyzing the real-time requirements for 

vehicular applications relying on edge/ cloud connectivity. He is also an active contributor to the transportation 

research community serving as a reviewer and the president of the Institute of Transportation Engineers - 

Virginia Tech chapter. 

 

6



Invited Talk 

Serving DNNs like Clockwork: Performance Predictability from the Bottom Up 
Dr. Arpan Gujarati, 

University of British Columbia, Canada 

  

Dr. Arpan Gujarati is Research Associate in the CS department at the University of British Columbia (UBC) in 

Vancouver (Canada). He is affiliated with the Systopia Lab at UBC, where he works with Margo Seltzer. Earlier, 

he spent a year as a postdoctoral researcher at the Max Planck Institute for Software Systems (MPI-SWS) in 

Saarbrücken (Germany), during which he worked with Jonathan Mace in the Cloud Software Systems Group. He 

completed his PhD thesis titled – Towards “Ultra-Reliable” CPS: Reliability Analysis of Distributed Real-Time 

Systems – under the supervision of Björn B. Brandenburg in the Real-Time Systems Group at MPI-SWS. He is 

the recipient of the 2021 SIGBED Paul Caspi Memorial Dissertation Award. He is broadly interested in real-

time systems, distributed systems, fault tolerance, reliability analysis, and scheduling problems in the cloud 

domain as well as in the cyber-physical systems (CPS) domain. 

7



Invited Talk 

QoS-aware resource management for Edge-AI 
Prof. Hana Khamfroush, 

University of Kentucky, USA 

   

Dr. Hana Khamfroush is an assistant professor at the computer science department of University of Kentucky, 

USA since 2018. Prior to this, she held a postdoctoral position at the computer science department of Penn State 

University, USA, between 2015 and 2017. Dr. Khamfroush's research interests include edge intelligence, 

wireless networks, network modeling and optimization. Her research has been funded by several sources and 

organizations including the National Science Foundation (NSF), Cisco Research Inc. and University of 

Kentucky. Dr. Khamfroush is a senior member of IEEE and a recipient of several awards, including two rising 

stars at EECS by MIT and CMU, and a Heidelberg Forum award. Beside her technical work, she has a passion 

for promoting underrepresented communities and specially women in computer science. She is the faculty 

advisor of ACM-W at the University of Kentucky and has received a prestigious Sarah Bennet Holmes award 

from the University of Kentucky for her contributions to issues that affects women in Kentucky. 

8



Invited Talk 

Low power Machine Learning Techniques for Edge-AI 
Prof. Mohammad Al Faruque, 

University of California at Irvine (UCI), USA 

  

Prof. Mohammad Al Faruque is currently with the University of California Irvine (UCI), where he is an 

associate professor (with tenure) and directing the Cyber-Physical Systems Lab. Prof. Al Faruque is the recipient 

of the School of Engineering Mid-Career Faculty Award for Research 2019, the IEEE Technical Committee on 

Cyber-Physical Systems Early-Career Award 2018, and the IEEE CEDA Ernest S. Kuh Early Career Award 

2016. He is also the recipient of the UCI Academic Senate Distinguished Early-Career Faculty Award for 

Research 2017 and the School of Engineering Early-Career Faculty Award for Research 2017. He served as an 

Emulex Career Development Chair from October 2012 till July 2015. Before, he was with Siemens Corporate 

Research and Technology in Princeton, NJ.His current research is focused on the system-level design of 

Internet-of-Things (IoT), Embedded Systems, and Cyber-Physical-Systems (CPS) with special interests on 

design automation methodologies, data-driven modeling techniques including machine learning for design, CPS 

security, etc. His work involves novel hardware and software design for various CPS application areas, including 

mobile health (mHealth), Industry 4.0 (manufacturing), smart-grid, and autonomous vehicles. Prof. Al Faruque 

received the Thomas Alva Edison Patent Award 2016 from the Edison Foundation, the 2016 DATE Best Paper 

Award, the 2015 DAC Best Paper Award, the 2009 IEEE/ACM William J. McCalla ICCAD Best Paper Award, 

the 2016 NDSS Distinguished Poster Award, the 2008 HiPEAC Paper Award, the 2015 Hellman Fellow Award, 

the 2015 Kane Kim Fellowship Award, the 2017 ICCAD Best Paper Award Nomination, the 2017 DAC Best 

Paper Award Nomination, the 2012 DATE Best IP Award Nomination, the 2005 DAC Best Paper Award 

Nomination, the EECS Professor of the year 2015-16 Award, and the 2015 UCI Chancellor’s Award for 

Excellence in Fostering Undergraduate Research. Besides 100+ IEEE/ACM publications in the premier journals 

and conferences, Prof. Al Faruque holds 9 US patents. Prof. Al Faruque has published 2 books in the area of 

Embedded and Cyber-Physical Systems. 

9



Mark8s - A Management Approach for Automotive
Real-Time Kubernetes Containers in the Mobile

Edge Cloud
Bernhard Blieninger

Automotive System Software and Architecture
fortiss GmbH

Munich, Germany
blieninger@fortiss.org

Aaron Dietz
Department of Informatics

Technical University Munich
Munich, Germany
aaron.dietz@tum.de

Prof. Dr. Uwe Baumgarten
Department of Informatics

Technical University Munich
City, Germany

baumgaru@tum.de

Abstract—This paper presents a management approach for
real-time Kubernetes clusters in the automotive mobile edge
cloud. As part of a vehicle-centric approach to future autonomous
mobility the toolchain presented is positioned to extend, offload
and enhance the computational capabilities for real-time tasks of
a vehicle to the mobile edge cloud. The sensing of the environment
by sensor-equipped MECs allows an extended preparation of
driving tasks from the MEC to the vehicle. A similarity we seek
to exploit further. With the help of a management prototype, we
show the feasibility of our approach in principle and how such
a system can be realised. A further timing analysis is derived
in order to investigate the overhead the proposed management
toolchain is introducing.

Index Terms—mobile edge cloud, real-time systems, Kuber-
netes, automotive systems

I. INTRODUCTION

The current trend towards fully autonomous driving up to
SAE Level 5 requires future vehicles to provide a dynamic
driving toolchain that is capable of holistically sensing the
current traffic scenario, classifying and validating gathered
sensory data, and then applying these data points as input to
dynamic driving task algorithms [1]. Such toolchains often
rely on machine learning (ML) or stochastic algorithms for
image classification, object detection, or motion prediction
at almost every step [2]. Since these approaches are mostly
based on probability distributions, they often pose an inherent
problem for the safety of autonomous driving and are therefore
deliberately designed to be robust against perturbations. The
highly dynamic nature of various traffic situations also places
great demands on the available computing capacity and si-
multaneously inherits this variability of the situation into its
computation [2].

As autonomous systems, vehicles suffer from limited com-
putational capabilities, as well as energy, space, and weight
constraints, so they are often supported by connecting addi-
tional computational resources, such as a mobile edge cloud
(MEC) at the roadside [3], [4]. These MECs are often also
equipped with sensors on gantries and can thus assess current

This research was funded by the Federal Ministry of Transport and Digital
Infrastructure of Germany in the research project Providentia++.

driving situations at the respective location and prepare ma-
neuver calculations, leveraging the computation demands off
the vehicles [3], [5].
In this paper we want to address this situation by exploiting
and extending the similarities of vehicle and MEC from a
point of view of task reusability and scheduling. This enables
an increase in the safety of the system by increasing the
predictability of its task behaviour while decreasing the effort
on implementation and code / run time analysis.
We will first give an overview of the problem statement and
motivation, then go into comparison with related work and
show our approach. A prototype illustrating general feasibility
of our approach is described and derived timing analysis is
provided. Finally we conclude by depicting the achievements
and future work to do.

II. MOTIVATION AND PROBLEM STATEMENT

Although the MEC is capable of providing real-time driv-
ing task functionality to vehicles in its surroundings, like
offloading, extending (with gantry sensor data) or adding parts
of the dynamic driving toolchain, the introduction of such
decoupled functionalities always imply offloading or even
transfer costs [6]. In addition to the time delay imposed
by offloading, task runtime parameters have to be known
in advance. These are required for the vehicle to safely
start the offloading procedure without the risk of missing a
deadline on one of its offloaded tasks and thus fail the current
driving task requirements with potentially critical impacts [6].
Furthermore, sudden connection failures between MEC and
vehicle can occur, rendering previously carried out offloading
of tasks useless and potentially harmful. We therefore propose
a vehicle edge cloud design, where the MEC at roadside
is designed as a stationary twin of the vehicle. MEC and
vehicle therefore share their applications, operating system and
hardware design, which is upscaled (on the MEC side) with
the use of Kubernetes containers. The management toolchain
proposed in this paper allows for enabling this particular
use case and the full self-sufficiency of both vehicle and
MEC. Based on this design, the vehicle is provided with full

10



autonomy, integrating the MEC as potentially unreliable and
less performant ECU clone for real-time task executions into
its scheduling algorithms and policy. Furthermore, applications
can be developed, tested and verified only once if we assume
that they have a modular design and that used algorithms
can cope with certain differences of input values (e.g. traffic
observation angle). Thus, the MEC can be used as a HIL pre-
testing setup for updates or new rollouts of driving functions to
the vehicle, in order to ensure correct application functionality.
In addition, the use of identical hardware/OS (e.g. ARM,
RISC-V / RTOS, RT-enabled Linux) in the MEC and vehicle
means that similar system behaviour can be exploited and
thus runtime data can be obtained, which in turn can provide
clues to the runtime behaviour in the vehicle or, in the best
case, even be highly similar. Previous research has shown,
that such a scenario might be possible through the use of real-
time kernel patches or co-kernel approaches, but also show
drawbacks or unsolved challenges [7]. We assume that this
approach can be combined with the ML-based deployment
and migrations strategy researched in [8]. As of now, we solely
focus on the combination and direct connection of MEC and
vehicle, as further extensions to central cloud systems imply
new limitations in terms of transfer overheads or hardware
architectures.

III. RELATED WORK

Previous research on this topic has already shown that
it is possible to offload real-time applications [9] or whole
workflows [10] in a cloud environment.
In [9], a framework to offload low critical tasks to a cloud
environment is presented, where scheduling and offloading de-
cision are supported by machine learning but require an always
connected cloud to offload low critical tasks. The work misses
some key points of our proposed MEC environment, like the
dynamic driving situation and changing vehicle position.
In [11], a platform is designed for seamless deployment and
management of container clusters, similar to our approach.
They show very quick response times for requests ranging
from 3ms to 370ms. Nevertheless, this approach focuses on
a centralized cloud infrastructure, where a main cloud is
delegating apps to clusters on the edge. A similar approach is
shown in [12], where applications for the MEC are provided
that help with predictive cloud bursting. However, they again
use a centralized architecture and are addressing different
usage scenario.
Whereas [13] investigates on the 5G connection and the
custom Kubernetes scheduler, which improve latency and load
up times, whenever multiple containers are allocated onto the
edge server.
A traffic-aware dynamic container migration using LXC con-
tainers with real-time kernels on lightweight application con-
tainers is considered in [6].
Furthermore, the general idea of real-time containers and their
deployment with respect to time guarantees [14], and with a
focus on real-time and best effort container co-location inside
Kubernetes [15] is just recently getting research interest. The

described papers clearly show that offloading of real-time tasks
to the MEC is possible and that a Kubernetes driven MEC is
capable of hosting real-time applications, even with the means
of machine learning-based scheduling. Nevertheless, to the
best of our knowledge, there has not yet been an approach that
unites a vehicle-centric MEC and a light-weight Kubernetes
approach as we describe it.

IV. APPROACH

We separate the approach into three subsections framing the
general idea, the setup based on this idea and possible use case
scenarios.

A. General Idea

The overall idea of the proposed approach is that the
MEC is a nearly identical hardware and software twin of
the vehicle and that it is capable of providing extended
RT-services to a vehicle if present in the current area of
driving. The MEC is designed to be decentralized and divided
into smaller units containing one or more server clusters and
gantries equipped with sensors as well as 5G base stations for
communication [16] . On top of these clusters, Kubernetes is
introduced allowing for automated deployment and scaling,
as well as a basic management of containerized real-time
applications. In order to fully utilize and adapt the container
management to the automotive real-time MEC environment,
while also enabling task offloading, we introduce Mark8s, a
Management toolchain for automotive real-time Kubernetes
containers (k8s). It implements a communication gateway
per MEC unit enabling fast vehicle-based requests for
computational resources within a certain road sector the
vehicle is passing. In order to be fully decentralized MEC
units are equipped with adjacent neighbour discovery, as well
as inter-gateway communication supporting the exchange
of health information, such as available resources and the
unit’s uptime status between two or more adjacent MEC
units. Combining the computing capability of the MEC unit’s
Kubernetes cluster with gantry sensor systems will also
allow for offering real-time capable services beyond task
offloading from the vehicle or providing pre-computed cloud
information. This combination, in addition to a modularization
of the automotive driving task chain (sensing, calculating,
acting), enables the development and extensive testing of
such tasks on the vehicle-like MEC before applying them to
the more critical vehicle environment. A permanent sensing
container, for example, will fuse and classify found objects for
optimal driving pathway calculation before the information is
sent to the vehicle and eventually cross-checked with internal
sensor and calculation data. Although such driving scenarios
and their associated automotive toolchains can vary widely, a
common scheme consisting of three kinds of containers can
be used as a basis:
• One-shot containers (individual/sensitive services) are
only used by a single client/vehicle. If the container is no
longer needed, gathered data will be deleted and it will be
shut down (e.g. offloaded driving tasks)

11



• Multi-session containers (multi-user services) are started
once at least one client has requested them. Additional users
will simply get redirected to the already running instance.
Containers will get shut down, if no client is actively
using them after a certain grace period (e.g. driving convoy
applications).
• Permanent containers (permanent services) start running
without being requested and are a special kind of multi-
session container, which do not implement a grace period
(e.g. automatic emergency detection & alarming services).

Underlining the similarity of MEC and vehicle even further,
all examples given could be executed on the vehicle itself, just
requiring different sensor data and action receiver modules.
Besides other advantages, the containerized applications en-
able the car manufacturers (OEMs) to keep the whole chain
of software components within their development workflows
and to guarantee an OEM secured car control when deploying
on potentially foreign MEC infrastructure. It also facilitates
further follow-up questions on (ethical) responsibility and
accounting [17].

B. Setup

The setup derived from the general idea is depicted in
figure 1. As mentioned before, the MEC units consist of one
ore more gantries and server clusters running Mark8s with
Kubernetes. MEC/Mark8s units are connected to the vehicle
via low latency 5G radio cells allowing for direct wireless
network connection with the prototype gateway at the MEC,
where requests are forwarded to the k8s master, which in turn
manages different k8s nodes and the containers executed on
them.
As the proposed overall architecture of the MEC is decentral-
ized, its MEC units or prototype clusters act autonomously.
If requests cannot be handled, the Mark8s cluster gateway
will redirect the client to an adjacent prototype gateway/clus-
ter on the predicted future path of the vehicle. Information
about such adjacent clusters is asynchronously gathered from
a central status aggregation, where newly started prototype
clusters report their location and availability after installation.
Further health and connectivity status of adjacent clusters is
checked bilaterally between neighbouring prototype clusters.
Thus, newly installed clusters will report themselves to the
global discovery, get neighbouring cluster information and
start checking their status and availability. Afterwards, the cen-
tral status aggregation would only be needed for newly added
clusters, or if clusters change their connection parameters and
are thus no longer bilaterally detectable. Such unreachable
or crashed clusters are no longer used for load balancing or
computation considerations but do not affect the availability
of adjacent clusters, as long as the deployment/networking
infrastructure of each cluster is set up in a self-sufficient
manner.

client / 
vehicle prototype gateway

k8s masterk8s ingress proxy

management
component container calcHost

container
SensorFusX

container
ManufacturerX

prototype cluster

k8s node

orchestraterequest/receive
data

request service

gantry / sensor
system

exchange
senor data

k8s nodes

manage
service
traffic 

central status
aggregation 

exchange
uptime / health

 status

Fig. 1: Sketch of the setup scenario

C. Use Case Scenario

Illustrating the value and functional principle of the setup,
we constructed a use case scenario enabled by the prototypical
implementation. A vehicle approaching the feeder road of
a highway is setting up a connection via 5G network to
a MEC/prototype cluster unit capable of task offloading,
enhancing or extending. Once the connection is established,
an automated request for needed services is sent to the
prototype gateway. The gateway will then, based on the work-
load of the downstream Kubernetes cluster, either schedule
the requested service and return the service address after it
was successfully launched (SCHEDULED HERE), redirect
it to another gateway/cluster (OTHER GATEWAY) or deny
(CAN NOT SCHEDULE) the request.
In the event that the requested service could be scheduled
(SCHEDULED HERE), the responsible prototype cluster is
starting up and providing the containerized application, lever-
aging the computational needs of the vehicle, e.g. prepro-
cessing of a video stream for entertainment or augmented
transparency of surrounding vehicles. Other driving-related use
cases are also conceivable, such as a predictive lane assistant
outsourced to the MEC with increased potential for smoother
driving maneuvers and an extended prediction period due to a
dramatically expanded field of view at gantry bridges. Figure 2
shows a sequence diagram of a successful client request, which
is being scheduled on the local prototype cluster, finishing with
the Kubernetes objects being deployed. Once requested, such
a service container has to be periodically flagged as still active
by the client. This is done because, as the vehicle progresses
on its way, it might lose connection or autonomously connect
to a following prototype cluster unit and radio cell. On top of
these automatically initiated driving tasks, the vehicle can offer
additional manually triggered services for passengers, which
are supported by the prototype cluster.

V. DEMONSTRATOR AND TIMING ANALYSIS

In our setup two multi-core Cavium ThunderX servers
represent the MEC in figure 1 and are running vanilla
Ubuntu 20.04. Within this prototype setup all participants are
connected via Ethernet. A direct 5G connection is omitted
and assumed working as in [18], [16]. To achieve real-time
scheduling capabilities, the PREEMPT RT patched source

12



client rk8s gateway k8s master

9: deployment successful, URL

in response 8: OK

7: deploy corresponding ingress

6: OK

5: deploy corresponding

deployment with containers

4: OK

3: deploy service X

2: calculate if request can be

handled by this system

1: request service X

Fig. 2: Sequence diagram of a successful client request

code of the Linux kernel was used and compiled enabling
the option Fully Preemptible Kernel. Kubernetes is deployed
and runs on top of this real-time environment. The main
component of the MarK8s prototype cluster is the gateway,
which was designed to be light-weight and is therefore written
in node.js for this demonstration. It uses a simple SQLite
database to store operating information in it, like deployment
service parameters or health status. To exchange data between
vehicle and gateway - as well as for other communication
means - a REST-API is used.
As previous research has already shown the feasability of
a real-time capable Kubernetes as well as the potential of
offloading real-time applications (section III), we want to focus
on the measurement and analysis of the service request (con-
tainer upstart and prior decision making) as a main bottle neck
of our approach. Runtime and benchmarking tests concerning
the real-time capability showed that the PREEMPT RT was
successfully applied to the benchmarking task containers.
Measurements upstarting an NGINX (alpine) example native
systemd app (4829 ms) and Kubernetes preloaded container
(5010 ms) only revealed an overhead of 181 ms in aver-
age. Cold starts with containers from a remote source took
8731 ms and multi-session container starts - forwarding the
request to a running container - took 85 ms. However, the
most important measurement, showing the applicability of the
prototype, is the request-response period between a client’s
request and the answer from the Mark8s prototype gateway.
The gateway could either schedule a requested service locally
(SCHEDULED HERE), redirect the client to another gateway
(OTHER GATEWAY) or reject the request as not schedulable
at the moment (CAN NOT SCHEDULE). No matter what
the final result of the request is, the gateway needs to send
the responses as fast as possible to enable the client to
make an informed decision. Every scheduling decision case
was tested 50 times. Additionally we carried out tests for
CAN NOT SCHEDULE with the global discovery reachable

and not reachable to cover the worst case where the MEC unit
is isolated. Figure 3 shows the accumulated times measured
on average and the division into the different logical code
sections. It depicts that SCHEDULED HERE has the longest
response time (272.1 ms), the redirection OTHER GATEWAY
is in the middle (52.25 ms) and the CAN NOT SCHEDULE
response is the quickest (55,08 ms).

SCHEDULED HERE OTHER GATEWAY CAN NOT SCHEDULE
0

100

200

300

0.380.4

149.79

79.69

26.27 25.61
42.62 25.58 29.09

Scheduling Decision
av

er
ag

e
tim

e
in

m
ill

is
ec

on
ds

baseline

local scheduler

Kubernetes deployment

alternative gateway

rejection

Fig. 3: Request response time diagram for the 3 different
response variants following a client’s request

Furthermore table I show more detailed numbers and gives
further values derived from the measurements. The overall
value distribution can be explained by taking a deeper look
into the functionality and code structure of the three response
options. They all share a baseline part and a local scheduler
part, which checks the schedulability of the request locally.
However, if the request is schedulable, more effort has to be
done for the local deployment. If it is not schedulable locally,
the list of adjacent gateways has to be checked and its address
has to be forwarded to the requesting client. If neither is true
and there simply is no available adjacent gateway the request
can be denied quickly.

Given the above mentioned use case, where a vehicle is
entering the MEC-enabled section of a smart road, these first
timing analyses show promising results which can only be
further evaluated with real workload containers and the full
integration of Mark8s with other approaches like [15] and [14].

VI. CONCLUSION

We propose a Management approach for automotive real-
time Kubernetes Containers in the Edge Cloud (Mark8s). The
idea of a vehicle-centred automotive future is presented, in
which single MEC units are designed as independent hardware
and software alike stationary vehicles. The overall idea as
well as the design of the toolchain aims to improve fault-
tolerance, availability and reusability of applications (modules)
from the MEC to the vehicle, while also allowing for rapid
development and extensive testing of new driving applications
for robustness. The presented prototype shows the feasibility

13



Scheduling Decision Phase Min. 1st Qu. Median Mean 3rd Qu. Max.

SCHEDULED HERE
baseline 26.544 29.117 32.135 42.628 36.942 149.990

local scheduler 24.157 28.923 32.562 79.694 39.572 1286.690
Kubernetes deployment 99.597 112.066 126.370 149.799 160.977 422.249

OTHER GATEWAY
baseline 21.412 22.483 24.205 25.587 26.400 58.927

local scheduler 21.757 22.770 23.823 26.275 25.462 99.184
alternative gateway 0.299 0.340 0.378 0.408 0.410 1.125

CAN NOT SCHEDULE with global discovery
baseline 21.414 22.419 23.552 29.094 24.430 134.322

local scheduler 20.995 22.787 23.545 25.619 24.968 101.707
rejection 0.313 0.346 0.367 0.385 0.386 0.879

CAN NOT SCHEDULE without global discovery
baseline 19.818 20.905 22.497 24.393 24.278 51.964

local scheduler 19.700 21.460 23.277 23.762 24.940 34.613
rejection 0.270 0.301 0.331 0.359 0.359 1.103

TABLE I: Measurements of Mark8s’ scheduling decision timings: SCHEDULED HERE, OTHER GATEWAY and
CAN NOT SCHEDULE with and without working global discovery given in milliseconds

of offloading real-time tasks within such a scenario and gives
a first timing analysis in such a system, which can be further
enriched by enabling built-in safety and automation features
of Kubernetes. Finally, the proposed approach is not very
invasive and uses existing software components, is therefore a
good basis for future extensions and enhancements, like RT-
Kubernetes [14] or REACT [15].

VII. FUTURE WORK

While we can show that our approach is feasible for a real-
time automotive mobile edge cloud environment, certain re-
strictions, like privilege escalation due to the used SYS NICE
capability in the prototype, remain. This restriction could
be lifted using other available methods like Co-Kernels [7],
depending on the use case. Furthermore, useful extensions
to the orchestration and managing capabilities of Mark8s,
like predictive container start on gateways at the pathway
of a vehicle, are not implemented yet. As research on the
excluded vehicle part is, as well, still ongoing, we currently try
extending the toolchain with a vehicle-centric ML-supported
schedulability analysis, as presented in [8].

REFERENCES

[1] Taxonomy and definitions for terms related to driving automation
systems for on-road motor vehicles, ISO/SAE PAS 22736 (2021-08),
2021.

[2] E. Yurtsever, J. Lambert, A. Carballo and K. Takeda, ”A Survey of
Autonomous Driving: Common Practices and Emerging Technologies,”
in IEEE Access, vol. 8, pp. 58443-58469, 2020, doi: 10.1109/AC-
CESS.2020.2983149.

[3] S. Raza, S. Wang, M. Ahmed & M.R. Anwar (2019). A Survey
on Vehicular Edge Computing: Architecture, Applications, Technical
Issues, and Future Directions. Wireless Communications and Mobile
Computing, 2019, 3159762. https://doi.org/10.1155/2019/3159762

[4] Intel Corp, ”ECU Consolidation Reduces Vehicle Cost, Weight, and
Testing”, Intel Corp, Accessed: Oct. 27, 2021. [Online]. Avail-
able: https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/ecu-consolidation-white-paper.pdf

[5] T. Fleck et al. (2018). Towards Large Scale Urban Traffic Reference
Data: Smart Infrastructure in the Test Area Autonomous Driving Baden-
Württemberg.

[6] S. Maheshwari, S. Choudhury, I. Seskar, and D. Raychaudhuri. “Traffic-
Aware Dynamic Container Migration for Real-Time Support in Mobile
Edge Clouds.” In: 2018 IEEE International Conference on Advanced
Networks and Telecommunications Systems (ANTS). 2018, pp. 1–6.
doi: 10.1109/ANTS.2018.8710163.

[7] V. Struhár, M. Behnam, M. Ashjaei and A. V. Papadopoulos, ”Real-Time
Containers: A Survey” , 2nd Workshop on Fog Computing and the IoT
(Fog-IoT 2020), pp. 7:1–7:9, 2020, doi: 10.4230/OASIcs.Fog-IoT.2020.7

[8] O. Delgadillo, B. Blieninger, J. Kuhn and U. Baumgarten, ”A
Generalistic Approach to Machine-Learning-Supported Task Migra-
tion on Real-Time Systems.”, J. Low Power Electron. Appl., 2022,
doi:10.3390/jlpea12020026

[9] M.A. Maruf and A. Azim, ”Extending resources for avoiding over-
loads of mixed-criticality tasks in cyber-physical systems”, IET Cyber-
Physical Systems: Theory & Applications, pp. 60-70., 2020, doi:
10.1049/iet-cps.2018.5062

[10] J. Zhou, J. Sun, M. Zhang and Y. Ma, ”Dependable Scheduling for
Real-Time Workflows on Cyber–Physical Cloud Systems,” in IEEE
Transactions on Industrial Informatics, vol. 17, no. 11, pp. 7820-7829,
Nov. 2021, doi: 10.1109/TII.2020.3011506.

[11] H. Mfula, A. Ylä-Jääski and J.K. Nurminen, ”Seamless Kubernetes
Cluster Management in Multi-Cloud and Edge 5G Applications.”, In:
International Conference on High Performance Computing & Simulation
(HPCS 2020). 2021.

[12] F. Faticanti et al. , ”Distributed Cloud Intelligence: Implementing an
ETSI MANO-Compliant Predictive Cloud Bursting Solution Using
Openstack and Kubernetes”, In: K. Djemame et al. (eds) Economics
of Grids, Clouds, Systems, and Services. GECON 2020. Lecture Notes
in Computer Science, vol 12441. Springer, Cham. doi: 10.1007/978-3-
030-63058-4 8

[13] M. C. Ogbuachi, A. Reale, P. Suskovics and B. Kovács, ”Context-Aware
Kubernetes Scheduler for Edge-native Applications on 5G,” in Journal
of Communications Software and Systems, vol. 16, no. 1, pp. 85-94,
April 2020, doi: 10.24138/jcomss.v16i1.1027

[14] S. Fiori, L. Abeni and T. Cucinotta, ”RT-kubernetes: containerized
real-time cloud computing”, In Proceedings of the 37th ACM/SI-
GAPP Symposium on Applied Computing (SAC ’22), Association
for Computing Machinery, New York, NY, USA, 2022, pp. 36–39,
doi:10.1145/3477314.3507216

[15] V. Struhár, S. S. Craciunas, M. Ashjaei, M. Behnam and A. V.
Papadopoulos, ”REACT: Enabling Real-Time Container Orchestra-
tion,” 2021 26th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA ), 2021, pp. 1-8, doi:
10.1109/ETFA45728.2021.9613685.

[16] V. Lakshminarasimhan and A. Knoll, ”C-V2X Resource Deployment
Architecture Based on Moving Network Convoys,” 2020 IEEE 91st
Vehicular Technology Conference (VTC2020-Spring), 2020, pp. 1-6,
doi: 10.1109/VTC2020-Spring48590.2020.9128410.

[17] J. Gogoll and J.F. Müller, ”Autonomous cars: in favor of a mandatory
ethics setting” , Science and engineering ethics, 2017, vol. 23 , no. 3,
pp. 681-700.

[18] M. Tao, K. Ota and M. Dong, ”Foud: Integrating Fog and Cloud for
5G-Enabled V2G Networks,” in IEEE Network, vol. 31, no. 2, pp. 8-
13, March/April 2017, doi: 10.1109/MNET.2017.1600213NM.

14



Towards a Predictable and Cognitive Edge-Cloud
Architecture for Industrial Systems

Mohammad Ashjaei∗, Saad Mubeen∗, Masoud Daneshtalab ∗, Victor Casamayor†, Geoffrey Nelissen‡
∗Mälardalen University, Sweden

†Technical University of Vienna, Austria
‡Eindhoven University of Technology, the Netherlands

∗firstname.lastname@mdu.se, †v.casamayor@dsg.tuwien.ac.at, ‡g.r.r.j.p.nelissen@tue.nl

Abstract—In this paper, we present a conceptual proposal for
a novel predictable and cognitive edge-cloud computing architec-
ture for industrial cyber-physical systems. Timing predictability
in this multi-layer architecture is envisioned to be supported by
cognitive adaptation mechanisms in various computing layers of
the edge-cloud computing continuum, including the communica-
tion among the layers. We also discuss our preliminary plan to
realize the proposed architecture. Furthermore, we conceptualize
the proposed architecture on a use case from the automation
industry to show its applicability.

I. INTRODUCTION

The edge and cloud computing technologies have already
become an integral part of many industrial Cyber Physical Sys-
tems (CPS), from infrastructure monitoring, smart automation
and construction equipment to telecommunication infrastruc-
tures [1], [2]. In such industrial systems, the environment is
considered to be highly dynamic. A typical case would be that
of construction quarries which are subject to frequent changes
in their environment (due to weather, layout modification, etc.)
and that accommodate battery-operated construction vehicles
that regularly join and leave the site to, for example, fulfill
variable charging requests. Beside their requirements for adap-
tation to varying operating conditions, most of these systems
require timing predictable services in various computing lay-
ers, e.g., edge and cloud computing layers, as often industrial
systems possess strict timing requirements, i.e., a hard service
deadline should be met.

The computing continuum, from edge to cloud, that is
available today lacks a holistic support for cognitivity, adap-
tivity and timing predictability in these industrial CPS. In this
context, cognitivity refers to processes that monitor the envi-
ronment, intelligently perceive the situation, and autonomously
adapt the overall utilisation of resources, including computa-
tion and communication resources. A system is considered
timing predictable if it is possible to prove or demonstrate
that it meets all the specified timing requirements [3]–[5]. The
primary objective of the overall adaptation is to obtain optimal
resource utilisation and reduction of overall cost and energy.

To meet these requirements, this paper proposes a novel
predictable and cognitive edge-cloud computing architecture
for industrial CPS. Timing predictability is supported by cog-
nitive adaptation mechanisms in the edge-cloud architectures.
Therefore, we use the term predictable cognitive edge-cloud
computing continuum throughout the paper to spotlight on

the novel feature of the proposed architecture. That is, timing
predictability of services, also known as timeliness of services,
will be supported through the use of cognitive and adaptation
mechanisms in various layers of the computing continuum.
We will leverage AI-enabled technologies that allow the de-
velopment of computing continuum, from edge to cloud [6].
Achieving such an architecture is of paramount importance
to many Original Equipment Manufacturers (OEMs) in their
path towards providing not only timing predictable services
but also energy- and cost-effective systems that are cooperative
and support zero downtime.

II. RELATED WORK

The concurrent execution of an application through all
computing continuum layers increases the complexity of the
entire system. Thus, holistic approaches have been considered
in the literature which tackle the design of the architecture
from different aspects, e.g., for mobile models [7], ad-hoc
computing establishment [8], and orchestration mechanisms
for the edge-cloud computing systems [1]. The architecture
proposed in this paper will also focus on utilising AI technolo-
gies to allow a seamless integration of adaptive mechanisms
into the architecture, while maintaining timeliness of services
in all computing layers. Therefore, the proposed architecture
considers timeliness aspects, both in computation and com-
munication, unlike the previously proposed architectures, that
makes it suitable for time-critical industrial systems.

Considering solely the application orchestration, a com-
prehensive survey presents various proposals [1]. There are
orchestration solutions for cloud computing, which are also
evaluated on edge computing, encompassing the edge-cloud
computing continuum [9]. One of the key elements of orches-
tration is the scheduling of services, where few proposals have
shown some development in this direction [10]. Predictability
in cloud computing has been a focus of several works [11],
[12], mainly targeting timeliness for applications in the cloud.
A few recent works further extend the predictability for the
computing continuum [13].

Focusing on the network technologies in the edge and
fog computing, there are very few works that address both
timeliness and adaptivity of the communication services. For
instance, a self-configuring time-sensitive network (TSN) is
proposed for fog and edge computing in the automation
domain [14] and for enabling fog computing to use TSN

15



technologies [15]. In this paper, we will focus on developing
communication infrastructure for the edge-cloud computing
architecture with the goal of enabling them for utilising
predictable communication technologies, such as TSN and
wireless TSN, and at the same time providing dynamicity in
the configuration of the network.

There are several large EU projects that have initiated
the development of edge-cloud computing continuum. For
example, the AI@Edge1 project aims at developing reusable,
secure and trustworthy AI solutions for the network edge.
The SERRANO2 project aims at developing an abstraction
layer for automated and cognitive orchestration from edge to
cloud computing. Development of a set of tools are the main
goal in the DITAS3 project, while Fog-protect4 targets data
protection through the computing continuum. The SESAME5

project aims at combining solutions of network virtualization
with edge computing to develop multi-service 5G small cells
to obtain low-latency communication.

To the best of our knowledge, none of the existing archi-
tectures particularly present how timeliness and predictability
for services can be achieved in various computing layers.
Timeliness is a paramount requirement that is imposed by
industrial systems as they have many timing requirements
to fulfill. Timeliness of services is often left as a secondary
objective, while providing computing resources is commonly
the primary goal. Therefore, we aim at building an edge-cloud
computing continuum that essentially supports predictability
in all computing layers including communication among the
computing layers. We exploit the concept of cognitivity,
including monitoring and adaptation mechanisms, to enable
support for predictability of services.

III. ENVISIONED ARCHITECTURE

The predictable and cognitive edge-cloud architecture envi-
sioned in this paper is depicted in Fig. 1. In this architecture,
the edge-cloud computing continuum consists of several layers
of interconnected computing resources. In general, the edge
nodes provide services to end-systems or devices, while a
cluster of fog nodes aggregate several edge nodes providing
enhanced computing capabilities and connectivity. The cloud
computing layer, which can consist of several layers itself
including enterprise (private) and public clouds, has a vast
quantity of computing resources and can steer large com-
putations with massive storage capabilities. The edge node
provides services with strict timing requirements, while less
time-critical services are deployed to fog or cloud layers. With
such an architecture, enterprises can take advantage of multi-
layer computing systems for their applications with different
requirements on timing.

We aim at leveraging cognitive methodologies in order
to support predictable services within the presented multi-

1https://cordis.europa.eu/project/id/101015922
2https://ict-serrano.eu/
3https://www.ditas-project.eu/
4https://fogprotect.eu/
5https://cordis.europa.eu/project/id/671596/results

layer architecture. This computing architecture can provide
services to the end nodes from different computing layers
with different requirements. In this work we focus on timing
requirements, however, we envision an architecture able to deal
with other type of requirements, such as reliability or security
requirements. For instance, a service for high time- and safety-
critical requirements may only be provided by the fog cluster,
while less-critical services can be deployed on the private or
even public cloud. The novelty of this architecture is to provide
timeliness in all layers, including the private and public cloud,
with different time-criticality levels.

Fig. 1. Envisioned predictable & cognitive edge-cloud computing architecture.

In order to provide such timeliness, during run-time of the
system without any service disruption, an entity is envisioned
to perform cognitive processes. This entity can reside in
different layers adhere to either a centralized, a distributed
or a hybrid model. The cognitive orchestration Application
Programming Interface (API) provides an interface between
the cognitive processes. Moreover, AI and Machine Learning
(ML) techniques will be utilized in the cognitive processes to
ensure intelligent, autonomous and time-predictable changes
during the run-time of the system. The cognitive processes
are categorized into three phases: monitoring the environment,
intelligent perception of the monitored environment, and on-
the-fly adaptation of the computing continuum.

We aim at achieving the following objectives to realize the
envisioned architecture:
• to develop a multi-layer edge-cloud computing architecture

with an intelligent cognitive capacity to adapt the system
autonomously during run-time, while maintaining the timing
requirements of the services imposed by industrial systems;

• to adopt suitable AI- and ML-based techniques to perform
run-time monitoring, intelligent perception, and adaptation
of the multi-layer edge-cloud computing architecture;

• to develop techniques to verify the timing predictability of
the system, in terms of computation and communication,
during offline and run-time of the system; and

• to demonstrate the proposed architecture together with cog-
nitive processes on realistic or industrial use cases.

IV. PRELIMINARY PLAN TO REALIZE THE ARCHITECTURE

The envisioned architecture will be realized as a hierarchical
model consisting of several computing layers from edge nodes

16



to a cluster of fog nodes, until the cloud (including enterprise
private and public clouds).

A. Predictable run-time environment and communication

The novel essence of this architecture is its support for
timing predictability in all layers. Hence, predictable run-
time environments, such as real-time operating systems and
real-time orchestration systems, will be utilized. In addition,
timing predictability will be considered in communication
among several computing layers that should also handle high-
bandwidth and low-latency communication over wired and
wireless networks. For instance, TSN will be considered for
wired communication within and between computing lay-
ers [16]. Utilizing 5G, as a wireless technology with low-
latency and high-bandwidth support, will be considered where
wired connection cannot be established. In addition, converged
TSN and 5G communication will also be considered [17].

B. Cognitive Orchestration API

We will investigate various solutions to develop an entity
to provide capacity for cognition, for instance, a centralized,
a distributed or a hybrid model. A centralized model has the
advantage of requiring less synchronization, while a distributed
model scales better for large systems. In general, edge-cloud
computing systems are complex and large, hence a hybrid
model might seem a priori a better solution. In any case, these
trade-offs will be investigated to select a suitable model to
deploy the cognitive entity.

In brief, the cognitive entity will follow the execution
and communication of the distributed application auditing
its timeliness and proposing adaptive measures. Then, the
communication interface between the edge-cloud system and
the cognitive entity will be realized by the cognitive orches-
tration API. The intention is not to implement an entirely new
orchestration API, instead to adopt and enhance the existing
solutions to provide such an interface, e.g., Kubernetes (like
KubeEdge6).

Once the cognitive orchestration API is designed, it will be
furnished with a set of ML techniques to provide its cognitive
behavior.

C. Cognitive Capacity: Monitoring and Dynamic Adaptation

Cognition requires three phases: monitoring the edge-cloud
system and its environment; intelligently perceiving the sit-
uation; and autonomously adapting the configuration accord-
ingly.

A set of techniques will be used to efficiently monitor the
computation and communication utilization. Different param-
eters will be considered when such monitoring techniques are
designed, e.g., periodicity of monitoring, metrics to monitor,
and update rates. Open-source tools, such as Prometheus7, can
be adopted to monitor lower-level metrics of the system.

Half-way between monitoring and intelligent perception can
be found techniques of predicting monitoring, which by means

6https://kubeedge.io/en/
7https://prometheus.io/docs/introduction/overview/

of ML/AI techniques are able to predict future outcomes of
the monitoring module to enhance the system perception.
Then, intelligently perceiving the situation is achieved by
inferring the current and future edge-cloud system states
with respect to its requirements, anticipating possible Service
Level Objectives (SLOs) violations. Finally, the cognitive
entity selects the most appropriate adaptive mechanism. To
do so, a set of techniques based on ML/AI techniques will
be adopted to autonomously adapt the edge-cloud system, in
terms of computing or communication capacities. For example,
a monitoring technique can regularly inspect the network
utilisation within fog nodes and an adaptation technique can
adjust the routing of traffic based on the gathered (or historical)
data. It can also predict potential congestion and recover
proactively. Similarly, high-level metrics for software in a
computing platform can be monitored, such as the efficiency
of the resources used, which can lead to adaptation techniques
based on AI that can automatically optimise their deployment.

D. Support for Timing Predictability

We assume that many control applications that will be
deployed on edge, fog or cloud require to meet timing require-
ments such as deadlines, age and reaction constraints [18].
Similarly, delivering information from a remote computing
node to an end station should follow different timing con-
straints. The timing requirements of systems are usually
verified during the design phase of the systems and any
changes during the system will negate the verification of the
timing. In order to continuously support timing predictability
of the services in the proposed architecture, online timing
verification mechanisms are required. Any changes that the
adaptation mechanism proposes as per the cognitive processes
should be verified with respect to timing requirements before
their deployment. Hence, we will develop analytical and
formal techniques to verify timing predictability of services
before deployment of proposed changes by the adaptation
mechanisms. Such an online verification will be done on
both communication and computation to ensure guaranteed
timing for the whole system. For instance, pseudo-polynomial
response-time analysis techniques for distributed embedded
systems and end-to-end resource analysis techniques [19], [20]
can be used to verify the timeliness properties of distributed
systems with low time-complexity.

V. CONCEPTUALIZATION ON AN INDUSTRIAL USE CASE

The envisioned architecture can be applied to any applica-
tion domain with strict and non-strict timing requirements that
employs edge-cloud computing for adaptive and predictable
systems, including construction vehicles, railway, telecommu-
nication, and many more. In this section, we conceptualize
the architecture on a use case from the automation industry to
demonstrate its applicability and usability.

The use case comprises an automation assembly line in
which a set of machinery collaboratively produces cell phones.
The machinery, including punching machine, cutting machine,
assembly machine, etc, are connected via a wired network

17



based on TSN switched Ethernet running Open Platform
Communication - Unified Architecture (OPC UA)8 in the ap-
plication layer. The Manufacturing Execution System (MES)
on the edge is utilized to deploy the orders and make changes
in the assembly lines. However, the MES works statically
and any changes in the order, communication between the
machines, and processes, should be done offline. This can
potentially cause some delays and disruption in the production.
Therefore, the main idea of this use case is to further develop
the automation system to offload some of the intelligent
controls to the fog or enterprise cloud, while the changes in the
processes and communication among the machinery become
automatic and online. This will potentially help the production
system to be dynamic in the sense that when different products
are ordered the changes in the production system becomes
quick and automatic.

Fig. 2. Conceptualization of the framework on an industrial use case.

We aim to showcase the envisioned architecture and ac-
companying techniques on this use case, including the edge-
cloud computing architecture, cognitive processes to make
the system dynamic and automatic, and respect the timing
predictability requirements that are imposed by the processes
in the assembly line. Within this use case, we plan to use a
private in-house cloud to build such an edge-cloud continuum
and deploy the MES on both edge and cloud to work collab-
oratively. Fig. 2 shows the conceptualization of the proposed
framework on an existing industrial automation use case.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel predictable and cog-
nitive edge-cloud computing architecture for industrial CPS.
Furthermore, we presented our plan to realize this architecture
and develop accompanying techniques. We also provided a
conceptualization of the proposed architecture on an industrial
automation use case to show its applicability in practice. We
believe, the proposed architecture would be beneficial for
OEMs in their path towards providing timing predictable and
energy- and cost-effective systems that are cooperative and
support zero downtime. In the future, we plan to execute the
presented plan to realize the proposed architecture.

8https://opcfoundation.org/

ACKNOWLEDGMENT
The work in this paper is supported by the Swedish Gov-

ernmental Agency for Innovation Systems (VINNOVA) via
the projects PROVIDENT, DESTINE and INTERCONNECT
and by the Swedish Knowledge Foundation via the projects
FIESTA, DPAC & HERO.

REFERENCES

[1] B. Costa, J. Bachiega, L. R. de Carvalho, and A. P. F. Araujo, “Orches-
tration in fog computing: A comprehensive survey,” ACM Comput. Surv.,
vol. 55, no. 2, 2022.

[2] R. Chaâri, F. Ellouze, A. Koubâa, B. Qureshi, N. Pereira, H. Youssef, and
E. Tovar, “Cyber-physical systems clouds: A survey,” Computer Networks,
vol. 108, pp. 260–278, 2016.

[3] J. A. Stankovic and K. Ramamritham, “What is predictability for real-
time systems?” Real-Time Sys., vol. 2, no. 4, pp. 247–254, Nov 1990.

[4] D. Grund, J. Reineke, and R. Wilhelm, “A Template for Predictability
Definitions with Supporting Evidence,” in Bringing Theory to Practice:
Predictability and Performance in Embedded Systems, ser. OpenAccess
Series in Informatics, vol. 18, Dagstuhl, Germany, 2011, pp. 22–31.

[5] S. Mubeen, E. Lisova, and A. Vulgarakis Feljan, “Timing predictability
and security in safety-critical industrial cyber-physical systems: A posi-
tion paper,” Applied Sciences, vol. 10, no. 9, 2020.

[6] P. Beckman, J. Dongarra, N. Ferrier, G. Fox, T. Moore, D. Reed, and
M. Beck, Harnessing the Computing Continuum for Programming Our
World, 2020, pp. 215–230.

[7] L. Baresi, D. F. Mendonça, M. Garriga, S. Guinea, and G. Quattrocchi,
“A unified model for the mobile-edge-cloud continuum,” ACM Trans.
Internet Technol., vol. 19, no. 2, 2019.

[8] A. M. J. Ferrer, S. Becker, F. Schmidt, L. Thamsen, and O. Kao, “Towards
a cognitive compute continuum: An architecture for ad-hoc self-managed
swarms,” 2021 IEEE/ACM 21st International Symposium on Cluster,
Cloud and Internet Computing (CCGrid), pp. 634–641, 2021.

[9] A. Ullah, H. Dagdeviren, R. Ariyattu, J. DesLauriers, T. Kiss, J. Bowden,
James, “Micado-edge: Towards an application-level orchestrator for the
cloud-to-edge computing continuum,” J. of Grid Comp., vol. 19, 12 2021.

[10] G. P. Mattia and R. Beraldi, “Leveraging reinforcement learning for
online scheduling of real-time tasks in the edge/fog-to-cloud computing
continuum,” in 2021 IEEE 20th International Symposium on Network
Computing and Applications (NCA), 2021.

[11] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, C. Delimitrou,
“Leveraging deep learning to improve performance predictability in cloud
microservices with seer,” SIGOPS Oper. Syst. Rev., vol. 53, no. 1, 2019.

[12] T. Nylander, M. Thelander Andrén, K.-E. Årzén, and M. Maggio, “Cloud
application predictability through integrated load-balancing and service
time control,” in 2018 IEEE International Conference on Autonomic
Computing (ICAC), 2018, pp. 51–60.

[13] M. Chardet, H. Coullon, and C. Perez, “Predictable efficiency for
reconfiguration of service-oriented systems with concerto,” in 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID), 2020, pp. 340–349.

[14] M. Gutiérrez, A. Ademaj, W. Steiner, R. Dobrin, and S. Punnekkat,
“Self-configuration of ieee 802.1 tsn networks,” in IEEE International
Conference on Emerging Technologies and Factory Automation, 2017.

[15] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, “Enabling Fog
Computing for Industrial Automation Through Time-Sensitive Network-
ing (TSN),” IEEE Comm. Standards Magazine, vol. 2, no. 2, 2018.

[16] M. Ashjaei, L. Lo Bello, M. Daneshtalab, G. Patti, S. Saponara,
and S. Mubeen, “Time-sensitive networking in automotive embedded
systems: State of the art and research opportunities,” Journal of Systems
Architecture, vol. 117, p. 102137, 2021.

[17] Z. Satka, D. Pantzar, A. Magnusson, M. Ashjaei, H. Fotouhi, M. Sjödin,
M. Daneshtalab, and S. Mubeen, “Developing a Translation Technique
for Converged TSN-5G Communication,” in 18th IEEE International
Conference on Factory Communication Systems, 2022.

[18] S. Mubeen, T. Nolte, M. Sjödin, J. Lundbäck, and K.-L. Lundbäck,
“Supporting timing analysis of vehicular embedded systems through the
refinement of timing constraints,” Software & Systems Modeling, vol. 18,
pp. 39–69, 2019.

[19] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-to-end
response-time and delay analysis in the industrial tool suite: Issues, ex-
periences and a case study,” Computer Science and Information Systems,
vol. 10, no. 1, 2013.

[20] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “End-
to-end timing analysis of cause-effect chains in automotive embedded
systems,” Journal of Systems Architecture, vol. 80, pp. 104 – 113, 2017.

18



RT-SCALER: Adaptive Resource Allocation Framework for
Real-Time Containers

Václav Struhár1, Silviu S. Craciunas2, Mohammad Ashjaei1, Moris Behnam1, and Alessandro V. Papadopoulos1

1Mälardalen University, Västerås, Sweden; 2TTTech Computertechnik AG, Vienna, Austria

Abstract—Container-based virtualization has emerged as an
advantageous deployment model in fog computing platforms
since it enables the seamless co-location of applications in a
heterogeneous environment with minimal overhead. For some
application domains requiring a certain degree of predictability
in the time domain (e.g., industrial automation), the adoption
of container-based virtualization is not straightforward since the
technology is not built to support real-time properties.

In this paper, we propose RT-SCALER, which is a framework
for adaptive resource allocation and dimensioning for real-
time containers. RT-SCALER dynamically adapts the resource
reservation of real-time enabled containers in order to improve
the temporal predictability of the real-time applications running
within the containers. We discuss the high-level orchestration
approach, relating the different control levels, and give some
practical insights into node-level container adaptation.

I. INTRODUCTION

Container-based virtualization has emerged as a suitable de-
ployment model in fog computing [1] and edge platforms [2],
[3], [4], as it provides near-native performance with low mem-
ory footprints and rapid start-up times. Additionally, containers
provide portability, ensuring that applications will work the
same way regardless of the environment where they are de-
ployed. Moreover, containers eliminate the additional overhead
of dedicated virtualization layers and, thus, use the host’s
available resources more efficiently. The properties mentioned
above make container-based virtualization a suitable tech-
nology for hosting applications in heterogeneous distributed
environments, such as fog and cloud computing platforms.
However, using containers in domains imposing safety and
real-time requirements (e.g., industrial automation), requires
that containers are spatially and temporally isolated and can
offer some form of timing predictability for the underlying
applications. While spatial isolation is a fundamental property
of containers, support for real-time is still under ongoing
research.

In general, real-time properties relate to the ability of
applications to produce not only correct logical results but
also to uphold temporal limits (deadlines) when computing
the results [5]. Such temporal requirements are challenging,
especially in heterogeneous environments with a dynamically
changing number of containers with unpredictable workloads
and access patterns to shared resources. However, only limited
attempts have been made to enable real-time behavior in
container-based virtualization within this research area. For

This work has been performed with the support from the Swedish Knowl-
edge Foundation (KKS) under the SACSys project (#20190021), and from
the Swedish Research Council (VR), under the PSI project (#2020-05094).

instance, the Hierarchical Constant Bandwidth Server (HCBS)
solution by Abeni et al. [6] provides temporal isolation of
containers that share the same physical host. The HCBS
consists of two-level schedulers, the global scheduling policy
for the containers, while the second level is based on fixed-
priority scheduling for software tasks.

Nevertheless, at runtime, container-based virtualization is
prone to resource interference. As the containers share the
operating system kernel of the host, the performance inter-
ference, that is, the performance isolation problem will occur
between the containers due to the resource competition [7].
Resource interference may influence the execution times of the
containerized applications and introduce timing unpredictabil-
ity. Within this context, the HCBS solution [6] specifies CPU
time reservation for RT containers in the form of a certain
percentage of the CPU bandwidth over a specified period. The
reservation is commonly done via reserving a CPU budget
over the period. Choosing the correct amount of the budget
and period is a non-trivial task, as it directly affects the timing
properties of the containers. The reservation problem becomes
even more challenging in heterogeneous and dynamic systems
due to (i) the worst-case execution time (WCET) on the
specific platform being unknown beforehand, (ii) due to the
unpredictable performance interference originating in other co-
located containers, and (iii) due to possible dynamic workload
changes in the RT containers. Therefore, it is not sufficient to
compute the resource reservation in terms of the budget and
period at design time (offline phase), but it is also necessary
to adapt it at runtime to improve the utilization of resources
and the time-predictability of services (online phase).

In order to achieve the goal of time predictability of
container-based virtualization, we propose an orchestration
framework named RT-SCALER in this paper that considers
both the offline and online aspects of the adaptation problem
for real-time containers. Besides an offline phase, in which the
container dimensioning can be done based on an static system
model without considering runtime overhead, we propose
an online phase that is able to respond to changes in the
performance of real-time tasks as well as to changes in the
required workload (e.g., when new applications or containers
join the system), in order to both preserve the timeliness
of applications and to utilize the available resources more
efficiently. We describe the overall design of RT-SCALER
along with its components and highlight the hierarchical
nature of the control problem for runtime container adaptation
(Sec. II). Additionally, we discuss some practical insights and
experimentally show the benefits of controlling the resources

19



during runtime at the local node level (Sec. III) and draw some
conclusions in Sec. IV.

The nature of container-based virtualization provides a
ground for resources adaptation. Due to rapid start-up times,
it is easy to horizontally scale up the number of containers
and balance the workload between them as shown in [8].
Additionally, it is simple to vertically scale the container’s
resources via cgroups. It is shown in [9] where authors scale
container resources based on CPU utilization of containers.

II. CONTAINER ORCHESTRATION

We present the high-level idea of RT-SCALER, which is
a general orchestration framework for static and dynamic
allocation and dimensioning of real-time containers. Real-
time containers supplement the spatial isolation properties
of containers with real-time capabilities relating to temporal
isolation and deadline fulfillment. Adding real-time properties
to containers has been addressed in [6] by introducing a
hierarchical scheduling patch for Linux-based systems.

The main aim of our container orchestration, called RT-
SCALER, is to manage the deployment and adaptation of
real-time containers in distributed applications featuring het-
erogeneous computing nodes such that individual real-time
task requirements are met. These requirements are not only
related to the real-time behavior but also resource usage such
as memory, I/O, and disk requirements and non-functional
requirements such as fault-tolerance, power consumption, or
resource efficiency.

The input to our RT-SCALER orchestrator is a set of real-
time tasks and containers. The containers can include either
self-suspending real-time tasks with implicit (or constrained)
deadlines, in which case they are labeled as real-time (RT)
containers or non-real-time tasks, in which case we talk about
best-effort (BE) containers. Real-time tasks are additionally
defined using a worst-case execution time (WCET) and a
period specifying an upper bound on the computation of the
task in each period and the rate at which the task is activated.
Both RT and BE containers can coexist on the same core,
but they are spatially and temporally isolated. The real-time
tasks are pre-allocated to containers, but the containers are not
pre-allocated to computing nodes (and cores), although they
can have a certain affinity set constraining the set of nodes
to which they can be allocated to. As defined in [10], each
RT container πk has additionally an RT interface consisting
of (Pk, Qk) where Qk is the CPU quota within an interval
(period) Pk, defining that the container πk cannot use more
than Pk time units over an interval of time of Qk time units.

We envision our RT-SCALER orchestrator to consist of two
phases, an offline and an online one.

A. Offline phase

Given a set of containers and real-time applications as de-
fined above, in the offline phase, RT-SCALER decides where
to place the containers such that the real-time requirements of
tasks are fulfilled. This decision will be based on two steps.

"TTTech - Internal"

RT Container RT Container
Best-effort 
Container(s)

RT 
Controller

RT 
Controller

Node-level
Controller

cg
ro

up
s

Pe
rfo

rm
an

ce
m

et
ric

s

cg
ro

up
s

Pe
rfo

rm
an

ce
m

et
ric

s

Sy
st

em
-le

ve
l

C
on

tr
ol

le
r

Orchestrator
node

Computing node

Fig. 1. Overview of the system.

The first step is to calculate a set of ideal RT interfaces
for the RT containers, i.e., compute (Pk, Qk) for every RT
container πk. This is similar to the non-trivial server design
problem [11], [12]. In this case, the server design problem is to
compute the optimal budget and period of all containers given
the set of real-time tasks and their assignment to containers.
There are several (computationally intensive) methods to com-
pute the optimal server parameters (e.g. [13], [14]) for both
fixed- and dynamic priority schedulers, which rely on a worst-
case schedulability analysis of the tasks within the server.
Since we know the underlying scheduling mechanism (fixed
priority) used to dispatch tasks within a container, we can
employ a response time analysis (e.g. [15]) under the worst-
case service pattern assumption for the given RT interface to
compute the optimal RT interface (Pk, Qk).

After solving the server design, the allocation of containers
to cores becomes an optimization problem similar to the
bin-packing problem, and thus NP-hard. There are, however,
efficient offline heuristics that can offer near-optimal solutions
in a reasonable time even for larger problem sizes [16].

Finally, BE containers need to be assigned, and this can be
done either in a random or more balanced fashion. A balanced
assignment of BE containers could take into account, e.g.,
the number of BE tasks in the container and the remaining
CPU bandwidth of each node. Once assigned, the remaining
bandwidth on each node can be distributed (uniformly or non-
uniformly) to the respective BE containers.

The offline phase is not sufficient to guarantee the desired
real-time behavior of applications at runtime. It is too complex
(and unrealistic) to build an exact model of the underlying
system and the runtime interactions between the containers
in order to be able to rely solely on the resulting offline
dimensioning of containers. Runtime effects may lead to a
variance in the temporal behavior since the temporal isolation
is not perfect and influenced by runtime artifacts (e.g., cache
effects, interrupts) and system overhead. Hence, the ideal
server dimensioning done at the offline stage may not lead
to the desired behavior in practical deployments. Additionally,
new applications or containers can be released in the system,
requiring a runtime adaptation of existing containers or assign-
ment of new containers to the available (and possible) cores.

20



B. Online phase

In the online phase, we envision two components interacting
with each other to be able to respond to unforeseen changes
in the temporal behavior of runtime tasks. One component
is online monitoring of the real-time and health aspects of
applications. This aspect is described along with the gen-
eral framework for deploying and implementing an online
container orchestrator module in [10]. In [10], the authors
introduced Container Level Metrics (CLM) to capture and
continuously evaluate: (i) the number of deadline misses, (ii)
the lateness, and (iii) the response-time of real-time tasks.
Additionally, we also monitor Operating System-Level Metrics
(OSLM) that give us a picture of the health of the underlying
system and the containers. In [10] the authors give special
attention to the system overhead, which can affect the temporal
isolation property and system utilization which can be used
to optimize the response time of tasks as well as to detect
overload scenarios or starvation in BE containers.

At runtime, there are several actions that we are able to
take based on the CLM and OLM measurements. The most
straightforward parameter to change is the container budget.
For example, when detecting a deadline miss of a task, we can
increase the budget of the corresponding container, thus giving
the tasks within more CPU bandwidth to resume their correct
behavior. Naturally, the decision of when and how much to
increase the budget is non-trivial as it depends on multiple
aspects like the overall system utilization, the effects on other
RT and non-RT containers, and the implications on the system
overhead. We can also change the period of a container, e.g., to
let it run more frequently. This also has complex implications
on the overall system behavior and may also affect other tasks
running in the same container. Additionally, the implications of
changing the period at runtime on preempted but not finished
tasks need to be considered. A third dimension where we
can enact changes is the container allocation. If we detect
at runtime that the system is becoming overutilized or that we
cannot guarantee the temporal correctness of all RT tasks and
containers, the system may move one or multiple containers
onto another (less congested) node. Here, the complexity
comes from identifying which containers to move and to
which node(s) to move them. Additionally, while the first two
parameters were (somewhat) more continuous in nature since
we have a whole range of possible values to choose from,
the reallocation decision is inherently a binary one. Thus, at
runtime, we need to be very careful when to switch from
slightly adjusting container parameters to deciding that one
or multiple containers need to be moved.

The node-level view is depicted in Fig 1 where RT- and BE-
Containers coexist in a node, and, additionally, there is one RT-
Controller per RT container. The RT-Controller is responsible
for adapting local container-level parameters. We do not detail
the specifics of what type of controller to use since this is
ongoing work, but we envision a runtime adaptation based
on control theory. While the RT-Controllers here are local
to the RT containers (and hence apply changes to local

container values), they need to synchronize and orchestrate
to node-level and system-level controllers. By having this
controller hierarchy, we can ensure that the holistic view of
the distributed system is maintained and the correct overall de-
cisions are made. We envision simple but fast controllers that
interact locally with the budget of a container (within some
predefined bounds) and can react quickly to runtime violations.
Moreover, a node-level controller needs to orchestrate between
the RT-Controllers, e.g., to modify the allowed bounds for
local budget changes and compute correct dimensioning of,
e.g., container periods depending on the overall node-level
system state. On the next hierarchical level, a centralized
controller needs to orchestrate the migration and reallocation
of containers to other nodes.

Another aspect of online redimensioning/reallocation is
resource and task optimization. Even when no real-time re-
quirements are violated, the RT-Controllers may decide that
there are enough free resources in a node to redimension
a particular container (e.g., increasing its budget) to reduce
the task response times. Alternatively, an RT-Controller may
detect that tasks within an RT-Container finish well before
their deadlines and decide to reduce the budget in order to, e.g.,
optimize non-functional properties such as power consumption
or give more bandwidth to BE containers.

III. PRACTICAL INSIGHTS

This section provides a brief insight into the local control
of RT-Containers via a simple PID loop to underscore the
potential of runtime adaptation in real-time containers.

The underlying container system in our work is based on
the HCBS patch1 by Abeni et al. [6] that provides temporal
isolation of containers sharing the same physical host. The
patch is consistent with existing real-time analysis (some
results show that it is compatible with the Multiple Periodic
Resource Model analysis). The patch hierarchically chains
two existing scheduling policies (SCHED DEADLINE and
SCHED FIFO). The SCHED DEADLINE scheduling policy
implements the Constant Bandwidth Server (CBS) algorithm
as the root scheduling policy of the scheduling hierarchy.
The second level scheduling policy is fixed-priority scheduling
policy SCHED FIFO. The scheduler provides an interface to
control the parameters of the scheduling policies via cgroups.
In a cgroups virtual file system, ’cpu.rt runtime us’ serves to
control CPU time reservation for each RT container.

We enhance the Linux Kernel with an online RT task
monitoring module and an adaptation module for adapting
local container-level parameters. The task monitoring module
recognizes containerized real-time tasks that run within the
context of HCBS patch, and it continuously collects RT-related
performance metrics [5], [10]. In our experiments, we consider
the response time of the self-suspending periodic task. How-
ever, the module also collects other data consistent with CLM
metrics defined in [10]. The module timestamps scheduler-
related events. The adaptation module aims to continuously

1Available at: https://github.com/lucabe72/LinuxPatches/tree/HCBS

21



 100

 150

 200

 250

 300

 350

 0  50  100  150  200  250  300

 1x106

 2x106

 3x106

 4x106

 5x106

 6x106

 7x106

 8x106

 9x106

 1x107

 1.1x107

 1.2x107

 1.3x107

 1.4x107

 1.5x107

R
e
s
p
o
n
s
e
 T

im
e
 [

m
s
]

B
u
d
g
e
t 

[u
s
]

Job nr.

Response Time
Budget [us]

Target Response Time

Fig. 2. Response time of a dynamically changing containerized task without
online adaptation.

adjust the budget for the real-time containers in a reactive
manner in order to keep the real-time performance stable.
The adaptation module interacts with the monitoring module
to obtain monitoring data (CLM, OSLM) and utilizes a PID
controller to adapt the budget of the RT container.

We perform an experiment to demonstrate the adaptation
process on the Intel i5 computer with 8GB RAM using Debian
Linux (Kernel 5.2.) patched with the Hierarchical Scheduling
Patch, and running Docker v20.10.

An experiment showing the feasibility of our idea is de-
picted in Fig. 2 and Fig. 3. Fig. 2 shows a possible scenario
when the response-time of an RT container is affected by
unforeseen circumstances. We simulated such a change by
changing the workload in the container. At the 60th and
180th job instances, the workload increases by 30%. At the
120th and 240th job instance the workload returns to its
original level. The RT budget of the RT container is reserved
to fulfill the target response time (200ms). However, any
workload change or system interference may affect the Quality
of Service of the RT container at runtime such that it is not
able to deliver demanded performance.

Fig. 3 shows the same scenario that employs RT-SCALER.
The monitoring module continuously keeps track of the re-
sponse times of the containerized tasks. The adaptation module
changes the RT budget based on the measured response time.
As can be seen, the online adaptation quickly responds to the
changing workload and keeps the response time closer to the
desired value represented by the blue horizontal line.

IV. CONCLUSION

We presented RT-SCALER, a container orchestration frame-
work that introduces a two-phased orchestration approach,
aiming to preserve RT performance in a multi-container en-
vironment. The initial offline phase of the system attempts
to compute the theoretically optimal set of RT parameters
for the RT containers. This phase is based on the theoretical
background of optimal server dimensioning. However, the
computed values may not be ideal in real-world heterogeneous
systems that may suffer from interference artifacts or workload
changes requiring some form of online adaptation. Thus, we
introduced an online phase that adapts the RT container values

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0  50  100  150  200  250  300

 1x106

 2x106

 3x106

 4x106

 5x106

 6x106

 7x106

 8x106

 9x106

 1x107

 1.1x107

 1.2x107

 1.3x107

 1.4x107

 1.5x107

 1.6x107

R
e
s
p
o
n
s
e
 T

im
e
 [

m
s
]

B
u
d
g
e
t 

[u
s
]

Job nr.

Response Time
Budget [us]

Target Response Time

Fig. 3. Response time of a dynamically changing containerized task with
online adaptation.

at runtime based on a hierarchical approach. We presented
the general RT orchestrator design, proposed the system’s
architecture, and showed an experiment that demonstrates the
feasibility of the idea at the local RT container level.

In future work, we want to investigate different adaptation
strategies of real-time containers. For example, the adaptation
mechanism could predict workload from previous historical
data and proactively dimension the resources. Moreover, we
want to address the control challenge of deciding which server
parameter to change (including the decision to relocate an RT
container to another node) and experimentally evaluate the
complex control loop across different hierarchical levels in
distributed edge computing applications.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proc. MCC, 2012.

[2] W. A. Hanafy, A. E. Mohamed, and S. A. Salem, “A new infrastructure
elasticity control algorithm for containerized cloud,” IEEE Access, 2019.

[3] C. Dupont, R. Giaffreda, and L. Capra, “Edge computing in iot context:
Horizontal and vertical linux container migration,” in Proc. GIoTS, 2017.

[4] R. Morabito, “Virtualization on internet of things edge devices with
container technologies: A performance evaluation,” IEEE Access, 2017.

[5] G. C. Buttazzo, Hard real-time computing systems: predictable schedul-
ing algorithms and applications, 2011.

[6] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-time
scheduling in the Linux kernel,” SIGBED Rev., 2019.

[7] C. Jiqing, “I/O performance optimization analysis of container on cloud
platform,” in Proc. ICPICS, 2020, pp. 84–86.

[8] H. T. Ciptaningtyas, B. J. Santoso, and M. F. Razi, “Resource elasticity
controller for docker-based web applications,” in Proc. ICTS, 2017.

[9] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic
vertical elasticity of docker containers with elasticdocker,” in Proc.
CLOUD, 2017.

[10] V. Struhár, S. S. Craciunas, M. Ashjaei, M. Behnam, and A. V.
Papadopoulos, “REACT: enabling real-time container orchestration,” in
Proc. ETFA, 2021.

[11] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in Proc. RTSS. IEEE, 2003.

[12] ——, “Compositional real-time scheduling framework,” in Proc. RTSS,
2004.

[13] G. Lipari and E. Bini, “Resource partitioning among real-time applica-
tions,” in Proc. ECRTS, 2003.

[14] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis framework
using edp resource models,” in Proc. RTSS, 2007.

[15] L. Almeida and P. Pedreiras, “Scheduling within temporal partitions:
Response-time analysis and server design,” in Proc. EMSOFT. ACM,
2004.

[16] E. G. Coffman, M. R. Garey, and D. S. Johnson, Approximation
Algorithms for Bin Packing: A Survey, 1996.

22



High-performance real-time systems design from
cloud to embedded edge

Matteo Maria Andreozzi
Arm

Cambridge, United Kingdom
matteo.andreozzi@arm.com

Girish Shirasat
Arm

Cambridge, United Kingdom
girish.shirasat@arm.com

Abstract—Real-time computer systems are rapidly evolving
into high-performance heterogeneous systems where co-location
of multiple workloads can improve utilisation and re-use of
system resources. This, however, comes at the cost of perfor-
mance degradation due to interference on shared resources,
and increased uncertainty. Resource sharing critically increases
the need for predictively and deterministically managing the
systems’ resources. This will become a crucial property of future
computing systems following the cloud-native design paradigm,
in order to predict worst-case execution times (WCET) for their
dynamic real-time workloads before their deployment to the
embedded edge. In this work, we’ll cover the impact of interfer-
ence on shared resources in heterogeneous compute platforms,
and we’ll define the Arm terminology and the principles for
high performance real-time. We will also cover system software
architectures that are being envisioned in initiatives such as
SOAFEE (Scalable Open Architecture for Embedded Edge [2])
to address the need to enable mixed critical workloads and the
orchestration of it from cloud to embedded edge.

Index Terms—real-time, Arm, high-performance, mixed-
criticality, QoS, SOAFEE

I. INTRODUCTION

In computer-science, a radical shift towards heterogeneous
compute platforms is happening now, accelerated by the rise
of Machine Learning and thus dedicated accelerators, and the
plateauing of the Moore’s law applied to CPU compute power.
In the real-time computing landscape, this shift has given
rise to high-performance real-time applications. On high-
performing, heterogeneous systems co-location of multiple
mixed criticality workloads on the same SoC can dramatically
improve the utilisation of system resources, enabling resource
sharing (e.g., IO devices, hardware accelerators, etc.) and
improving the efficiency of data sharing across workloads.

However, co-location also comes at the cost of potential
performance degradation, both average and worst-case, due
to interference on shared resources, and increased uncertainty
in terms of workload execution time. Both the academia
and industry have been investigating the impact of shared
resource contention on real-time and mixed critical software,
on hardware requestors (e.g., CPU, GPU, other hardware
accelerators) and on memory bandwidth availability, resources
access latency, and jitter [12], [13], [14]. The advent of
larger integrated platforms which will run real-time workloads
alongside GPOS workloads now calls for those systems to
being able to provision their resources in a quantifiable and

predictable way. This becomes crucial to determine acceptable
worst-case execution times (WCET) for real-time workloads
and to ensure smooth and responsive operation of the GPOS
workloads running alongside them.

To aid compartmentalise traffic streams on shared resources,
silicon hardware designers and manufacturers have introduced,
primarily in the infrastructure market, technology that allows
memory transactions to be labelled and then subsequently
confined to partitions of shared resources: Arm, MPAM [3],
and Intel, CAT [7] . In this paper, we introduce our key
design principles, methodology and metrics for designing
high-performance real-time systems. We will also look at the
role software plays in achieving such systems.

II. ARM HIGH-PERFORMANCE REAL-TIME
DESIGN PRINCIPLES

This section describes the foundation concepts and theory
behind designing Arm-based high-performance real-time sys-
tems.

A. Real-Time Performance Metrics
Power consumption, performance (typically average or peak

performance), and chip area are widely utilized design met-
rics considered when designing a computing system. Such
metrics are typically obtained through measurement under
a set of conditions representative of the intended system
production deployment operations (platform target workloads).
When designing real-time systems, additional performance
metrics should be considered, such as quantifying how much
the system allows confident computation of worst-case ex-
ecution times (WCET) for each of the real-time workloads
it is being designed to execute [1]. Typically, the degree
of uncertainty on computing the WCET that characterizes
current high-performance real-time compute platforms makes
classical methods of computing the WCET unfeasible (such
as analytical) [6]. We therefore advocate the adoption of
the following empirical performance metrics: i) Worst-case
measured performance and ii) Time-predictability, defined as
the quotient between the best-case measured performance and
the worst-case measured performance.

B. Sources of uncertainty
The reason for high uncertainty in determining the WCET is

typically down to specific sources of uncertainty. The sources

23



of uncertainty we consider in the following affect the ability
to predict or even precisely measure the timing characteristics
of real-time systems:

• Workload input data or events: they cause uncertainty
when influencing the software control flow or the amount
of computation performed by it. In this case we say that
the workload is data-variant. For example, conditional
branches based on values provided by or calculated from
input data can lead to different paths of execution. Also
the depth of loops or recursions may depend on the
content or size of the input data.

• Hardware state: state of the hardware resources at begin-
ning of execution. Examples are initial cache contents or
memory controller row buffer content.

• Interference: deviation in performance caused by work-
loads that contend for the same shared resources, alter
the initial hardware state for other workloads or both.

C. Shared resources and interference channels

As interference arises from contention between workloads,
on accessing or using shared resources, co-location of work-
loads on high-performance system is prone to be affected by
such contention, which calls for its accurate quantification.
Each hardware shared resource can exhibit one or more
interference channel, each one corresponding to a place in
the resource where a specific type of contention can happen.
The following are examples of potential resource interference
channels:

• Internal hardware buffers between pipeline stages: a
congested buffer may result in a general resource stall,
delaying the service provided by the resource.

• Arbitration policies: they govern which workload has
access to the resource at any given time. Biased poli-
cies (e.g., strict priority ones) or generally non-work-
conserving ones can cause starvation of workload request
flows

III. QUALITY OF SERVICE (QOS)

Solutions that address the need for predictively and deter-
ministically managing shared resources are collectively named
Quality of Service (QoS). We define here the QoS principles
for architecting and designing a QoS-enabled computing sys-
tem capable of delivering differential performance treatment
to its users (workloads).

Principle 0 - There is no controllability of a system
without observability.

A system where QoS controls are successfully deployed
should provide a consistent monitoring infrastructure which
can sample the system and provide feedback on the function-
ing of such controls. It also allows and enable software to
discover which shared resources are utilised by a workload.

Principle 1 – QoS is a system-level feature:
A QoS-enabled system should orchestrate its resources in

a consistent way, so that the system’s users (workloads) are
provisioned with certain Levels of Service (memory access

bandwidth and latency, compute time, peripheral access, etc.)
consistent throughout.

Principle 2 - QoS is quantifiable and predictable:
The set of guarantees a QoS-enabled system can provide

should be clear and the level of service that the system will
guarantee to its user should be predictable based on system
configuration and other conditions.

These principles should be considered both for individual
hardware components design and when approaching the whole
system design and integration, including software stack and
functions. [4]

IV. APPLICATION MODEL

In high-performance real-time systems, hardware should be
configurable and configured to provide service guarantees to
a certain mix of software, and software should be enabled
to manage and monitor the resources of known hardware.
We here adopt a workload analysis process, the data-flow
model [8], aimed at identifying the QoS requirements of the
applications to be deployed on a target system. The data-
flow model allows to identify the resources (processing nodes
and data paths) which are involved in the execution of such
workloads. Those resources will be the ones requiring their
service to be characterised, and resource management when
contended upon.

We start with capturing use cases requirements, as this is
fundamental to enable correct resource provisioning. Work-
loads should have specific goals. A well-characterised work-
load is one for which we can specify its QoS requirements and
identify a range of QoS values over which it can operate and
meet said goals. A generic QoS Framework can manage differ-
ent types of guarantees, all contributing to various workloads’
goals, for instance performance, power, or precision. In the
following, we look at leveraging QoS controls to enforce real-
time guarantees, i.e., those referring to the timing properties
of a real-time workload.

Realtime workloads are typically composed of a collection
of entities (program code, devices, data streams) that co-
operate in a non-trivial way. Workloads might have elements
and functions which are dependent on external events or
input, computations which might be triggered dynamically,
and which might be unpredictable both in terms of activation
time and duration. [5] For such systems, it is generically
unfeasible to statically compute any concept such as ”antic-
ipated peak or average load” by means of classic real-time
compute approaches such as static computation graph analysis.
Therefore, to define key timing parameters and constraints, we
break workloads down by means of the Data-Flow model.

The Data-Flow model we adopt consists of Processing
Nodes, compute elements which react to events, that can
produce and/or receive data, and can be either software (e.g.,
threads) or hardware entities (peripherals), and Data Paths,
which can either be physical links such as network intercon-
nections or software communication structures, and enable
connecting Processing Nodes to provide their service to the

24



workload, but are not directly providing it to the workload
itself.

According to Bikash S., et. Al [8] we can define QoS
as resource management of the end-to-end allocation and
scheduling of resources to workloads, based on their QoS
requirements, such as:

• Each processing node N satisfies its local constraints
• Each data path P satisfies the timing constraints of all

nodes N it connects, when activated
The mapping of use-cases onto the system’s shared re-

sources N – processing nodes and P – data paths, leads to
the identification of interference channels where monitoring
and control is needed to preserve data-flow isolation for such
use-cases. This is easily identified as the set of N, P which
appear in more than one dataflow.

A system capable of delivering high-performance real-time,
in which QoS-based resource management is implemented to
mitigate interference on its shared resources, should define
its following characteristics: Granularity, Resource Monitoring
and Resource Control.

A. Granularity

A system providing real-time can do so at different levels
of coarseness with respect to how it identifies the users
of its resources, i.e., the system granularity. A system’s
granularity is defined as the finest resolution at which the
system – as whole – can identify users of its shared resources
(the set of N and P), both for monitoring and control purposes.

B. Resource Monitoring

Monitoring of data paths and processing nodes provides
insight into which shared resources are utilised by workloads,
by what extent, and what causes interference on them. It also
supports the implementation of control loops in the system by
providing feedback to software to adapt its schedule or operate
resource controls. A monitoring infrastructure should enable
observation of all data paths and processing nodes involved in
the computation of the system workloads. A real-time system
can provide, for each identified path P, monitoring capabilities
to observe performance characteristics that are specific to each
shared resource, for instance:

• Path traversal latency: the end-to-end latency of the path
from input to output. Could be punctual, or aggregated
over a time window, with standard deviation and average
jitter over the same time window.

• Path utilization: the amount of path capacity in use at
any given time.

• Path bandwidth: i.e., amount of information transferred
over the path in a time window.

For each identified processing node N, the monitoring infras-
tructure can also provide:

• Node utilization: information processed/time unit as a
proportion of the node maximum capacity

• Node access latency: the wait time a user experiences
before obtaining compute service from the node, either

punctual or aggregated as average over a time window,
standard deviation, and average jitter over the same time
window

C. Monitor Characterization

Monitors can be characterized in terms of invasiveness,
precision, frequency, measurement lag:

• Invasiveness: expressed as absolute delta or tolerance
variance on the observed values due to perturbation
caused by the monitor on the observed metric

• Precision (resolution): expressed as minimum detectable
unit of measurement

• Frequency: maximum measurement collection frequency
(max between sampling frequency and interrogation fre-
quency) at which fresh measurement (not replicas of past
values) can be obtained from the monitor

• Measurement Lag: maximum measurement collection
delay (max between sampling collection and availability
to interrogation)

D. Resource Control

A Resource Control infrastructure should enable consistent
regulation of all data paths P and processing nodes N identified
in the data-flow analysis of the system workloads. Examples
of resource controls are:

• Path traversal latency control: maximum input (access)
to output (exit) latency for the path

• Path bandwidth control: minimum amount of data
guaranteed transferrable by a resource user over a defined
time window

• Path utilization control: minimum amount of resource
guaranteed to a resource user, expressed as a proportion
of the total available resource.

E. Resource Control Characterisation

Similarly, controls can also be characterised in terms of
transitory, precision and frequency:

• Transitory: maximum time over which the control con-
verges to a new steady state (regulates as intended) after
receiving input. Measured as time difference between the
time a new input is submitted to the control to the time
the control produces a stable and updated output

• Precision (resolution): minimum configurable unit of
control

• Frequency: maximum number of (re)configurations per
unit of time

F. Shared Resources Characterisation

Real-time computing systems are designed to execute work-
loads where data processed by computing nodes (N) and
data flowing between them through paths (P) requires service
guarantees. Some form of arbitration - implicit or explicit –
will regulate how users are granted access to those shared
resources. The execution time of a workload depends upon
the forward progress of the shared resourced used by its data
flow. The forward progress of a shared resource depends on

25



the arbitration points they contain. Arbitration points can be
managed by Resource Controls. Characterisation of the shared
resources consists in specifying what level of service those
resources provide to their users based on their arbitration
policies and configuration.

For example, the above could be about
• Resource-specific attributes such as local scheduling poli-

cies or resource access rules, including configuration
options and effects on the policies.

• Resource concurrent access and interference properties
Resource type and performance characteristics, scheduling

policies, cost/performance functions will all contribute to
resource-specific characterisation. A resource can be charac-
terised when its service curve is known, e.g., when, given
a user resource access pattern, its level of service can be
predictably determined [1]. This means given a specific input
into the resource, and a set configuration for its operable
controls, it is possible to know a-priori what will be the
measurable outcome of key resource metrics.

V. STANDARD HARDWARE RESOURCE MONITORS AND
CONTROLS

The Armv8.4-A Memory System Resource Partitioning and
Monitoring (MPAM) extension of the Arm Architecture define
mechanisms to provide traffic flows identification throughout
the system, and monitoring and control interfaces for MPAM-
enabled system resources. MPAM enhances the system mem-
ory request and responses with identifiers (PARTID and PMG)

• Partition Identifiers (PARTID) that identify the flow that
generated a particular request for the purpose of moni-
toring and control

• Performance Monitoring Group (PMG) property of PAR-
TIDs, which can be used for the purpose of finer grain
monitoring

MPAM enables operating systems or other software entities
to assign a PARTID to parts of a workload, and to monitor
and control their usage of the MPAM-enabled system shared
resources.

A. Monitoring Interfaces

MPAM provides two standard monitoring interfaces, both
of which are optional:

• Cache-storage usage monitors that report the cache utili-
sation for a given PARTID and PMG

• Memory-bandwidth usage monitors that report the num-
ber of bytes transferred for a given PARTID and PMG

Monitors can be configured to filter requests by type, for
example read or write, and by a choice of PARTID and PMG
or PARTID only.

B. Control Interfaces

MPAM provides 6 types of standard control interfaces, all
of which are optional:

• Cache-portion partitioning
• Cache maximum-capacity partitioning

• Memory-bandwidth portion partitioning
• Memory-bandwidth minimum and maximum partitioning
• Memory-bandwidth proportional-stride partitioning
• Priority partitioning
Cache-portion partitioning subdivides a cache resource into

several portions of equal and fixed size. Cache maximum-
capacity partitioning limits the ability of a flow to occupy
more than a configurable fraction of the cache capacity. Cache
maximum-capacity partitioning can be combined with cache-
portion partitioning, for example to restrict the ability of a
single flow to occupy all the capacity of cache portions that
have been made available to multiple flows.

Memory-bandwidth portion partitioning subdivides memory
bandwidth into several portions (quanta). Memory-bandwidth
minimum and maximum partitioning allow setting of a mini-
mum guaranteed and maximum permitted memory bandwidth
that is applied to a flow in the presence of contention.
Memory-bandwidth proportional-stride partitioning is based
on a configurable stride for each flow, permitting a flow to
consume bandwidth in proportion to its own stride relative to
the strides of other flows that are competing for bandwidth.

Priority partitioning provides a way for resources to expose
partition-based configuration of internal arbitration policies.
These can be used by system software for fine-grained control
over scheduling and arbitration policies in the memory system.

VI. CLOUD NATIVE SOFTWARE ARCHITECTURES
FOR MIXED CRITICAL WORKLOADS - SOAFEE

In the software defined embedded systems of the future,
cloud-native design patterns are being considered to enable
an agile DevOps environment for accelerated software fea-
ture deployments and increased developer efficiency [11].
As complex system designs get enabled with the resource
controls to provide a defined QoS required by an application
workload, the cloud native system software architectures and
corresponding infrastructure needs to provide the ability to
express the workload’s spatial and temporal requirements ,
configure the system to achieve these requirements which
includes configuring the the resource controls described in this
paper and orchestrate them across the distributed embedded-
compute system best suited to achieve those requirements.
This is a complex problem to solve because the existing cloud-
native infrastructure does not cater to mixed critical workload
development and there are no standards-based configuration
model or solution for mixed critical workload orchestration.

To enable complex features like mixed critical workload
orchestration, the QoS features described in this paper need
to be advertised in a standardized way from hardware to
firmware through constructs like ACPI/DT and then feed into
the operating system before exposing the platform capabilities
to an orchestrator like Kubernetes. Once the scheduler in the
orchestrator is aware of the system capabilities that includes
the general compute attributes like CPU core count, frequency,
amount of RAM, etc., along with real-time hardware capabili-
ties like MPAM, it should then configure the system attributes
using standardized interfaces and data models to satisfy the

26



application required service level agreements before deploying
the workload into the most appropriate compute element in the
system.

There are several technology issues that need to be solved to
address the above orchestrator usage scenario. We are listing
a few below, including:

• Standardized firmware interfaces for real-time system
features from hardware to firmware to operating system.

• Standardized software interfaces from OS to automotive
middleware and orchestrators

• Virtual development environment in cloud to enable
mixed critical workload development and deployment in
production system [10]

• Rich ecosystem of commercially supported and where
appropriate functionally safe / certified software compo-
nents.

The SOAFEE SIG was launched to bring together major
ecosystem players, including OEMs, Tier 1s, CSPs, OSVs and
ISVs, SIPs and other technology providers to address some
of these complex infrastructure issues. SOAFEE SIG will
deliver a cloud native architecture that is enhanced for mixed-
critical automotive applications and an open-source reference
implementation that enables commercial and non-commercial
offerings. [2].

VII. CONCLUSIONS

The paper presented an overview of our approach to design-
ing Arm-based systems for high-performance real-time, with
attention to workload decomposition and system-level require-
ments. We have also briefly summarized the Arm architectural
support and the complementary software initiative SOAFEE.
In follow-up contributions we will expand on our real-time
verification methodology and on details pertaining hardware
and software support for mixed criticality real-time workloads.

VIII. ACKNOWLEDGMENTS

We would like to acknowledge here the contributions of:
Frances Conboy, Sam Danyo, Adrian Herrera, Jan-Peter Lars-
son, and Andriani Mappoura. We also thank the University
of Pisa research group led by Prof. Giovanni Stea for their
continued and valued research collaboration relationship with
our team.

REFERENCES

[1] Alan Burns and Robert I. Davis. 2017. A Survey of Research into Mixed
Criticality Systems. ACM Comput. Surv. 50, 6, Article 82 (November
2018), 37 pages. DOI:https://doi.org/10.1145/3131347

[2] SOAFEE Initiative, http://soafee.io
[3] Arm® Architecture Reference Manual Supplement Memory System

Resource Partitioning and Monitoring (MPAM), for Armv8-A, available
online at https://developer.arm.com/docs/ddi0598/latest

[4] F. Rehm et al., ”The Road towards Predictable Automotive High
- Performance Platforms,” 2021 Design, Automation & Test in Eu-
rope Conference & Exhibition (DATE), 2021, pp. 1915-1924, doi:
10.23919/DATE51398.2021.9473996.

[5] M. Andreozzi et al., ”Heterogeneous Systems Modelling with Adaptive
Traffic Profiles and Its Application to Worst-Case Analysis of a DRAM
Controller,” 2020 IEEE 44th Annual Computers, Software, and Applica-
tions Conference (COMPSAC), 2020, pp. 79-86, doi: 10.1109/COMP-
SAC48688.2020.00020.

[6] Marco Paolieri et al., 2009. Hardware support for WCET analysis
of hard real-time multicore systems. In Proceedings of the 36th an-
nual international symposium on Computer architecture (ISCA ’09).
Association for Computing Machinery, New York, NY, USA, 57–68.
DOI:https://doi.org/10.1145/1555754.1555764

[7] Intel Cache Allocation Technology, https://software.intel.com/en-
us/articles/introduction-to-cache-allocation-technology

[8] B. Sabata et al, ”Taxomomy of QoS Specifications,” in Object-Oriented
Real-Time Dependable Systems, IEEE International Workshop on, New-
port Beach, CA, 1997 pp. 100. doi: 10.1109/WORDS.1997.609931 url:
https://doi.ieeecomputersociety.org/10.1109/WORDS.1997.609931

[9] Matteo Andreozzi et al., A MILP approach to DRAM access worst-
case analysis, Computers & Operations Research, Volume 143, 2022,
105774, ISSN 0305-0548, https://doi.org/10.1016/j.cor.2022.105774.

[10] Girish Shirasat et al., “Accelerating Software-Defined Vehicles
through Cloud-To-Vehicle Edge Environmental Parity” ,
https://soafee.io/blog/2022/sdv with cloud/

[11] Girish Shirasat “Cloud Native Approach to the Software Defined
Car”, https://community.arm.com/arm-community-blogs/b/embedded-
blog/posts/cloud-native-approach-to-the-software-defined-car

[12] Mohamed Hassan and Rodolfo Pellizzoni. ”Bounding DRAM interfer-
ence in COTS heterogeneous MPSoCs for mixed criticality systems”.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 37(11):2323–2336, 2018.

[13] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo.
”Modeling and analysis of bus contention for hardware accelerators
in FPGA SoCs.” 32nd Euromicro Conference on Real-Time Systems
(ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[14] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo. ”A holistic mem-
ory contention analysis for parallel real-time tasks under partitioned
scheduling”. In Proceedings of the 26th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2020), 2020.

27



Priority-Driven Real-Time Scheduling in ROS 2:
Potential and Challenges

Hyunjong Choi, Daniel Enright, Hoora Sobhani, Yecheng Xiang, and Hyoseung Kim
University of California, Riverside

{hchoi036, denri006, hsobh002, yxian013, hyoseung}@ucr.edu

Abstract—To ensure timely and safe operations of robotic
applications in a highly dynamic and uncertain environment,
predictable end-to-end behavior of systems is essential. Although
ROS (Robot Operating System) is one of the most prevalent
robotic middleware frameworks, it has shown limitations in real-
time support over the past decade. With this paper, we argue
that the real-time performance and predictability of ROS can
be significantly improved by enabling priority-driven scheduling
in the framework. To support this argument, we first review
our recent work on priority-driven chain-aware scheduling and
evaluate it with real-world scenarios through integration into the
open-source reference system, which was developed by Apex.AI
for ROS 2 executor benchmarking. Experimental results on a
resource-constrained platform, i.e., Raspberry Pi 4, demonstrate
that priority-driven scheduling outperforms the current ROS 2
default scheduling scheme in terms of various key performance
indicators, e.g., latency, message drop, and jitter. In addition,
we discuss two other challenges, multi-threaded executor design
and accelerator support, which have not yet been studied but are
essential for better real-time performance in ROS 2.

I. INTRODUCTION

ROS (Robot Operating System) has gained the spotlight
among developers in the robotics community by facilitating
software modularity and composability in the development
of robotic applications. However, over the past decade, ROS
has shown major shortcomings in real-time support required
for safety-critical applications. Although ROS 2, the new
version of ROS, aims to better support real-time capabilities
by employing a new software architecture and the Data Distri-
bution Service (DDS), it still remains challenging to guarantee
stringent timing constraints in ROS-based systems.

Ensuring predictable end-to-end latency is crucial for ap-
plications in a safety-critical domain [7]. However, meeting
this requirement in a practical framework like ROS 2 is not
a trivial problem due to the following reasons. First, robotic
applications generally form a set of processing chains whose
data and temporal dependencies are hard to analyze. Second,
ROS 2 has a complex and unique scheduling behavior caused
by multiple schedulable entities, e.g, callbacks, nodes, and
executors, across various abstraction layers, making it difficult
to apply existing real-time techniques. Lastly, due to the
open-source nature of ROS, many programmers independently
develop software components interacting with each other;
hence, it is hard to integrate them into a system for a given
mission while satisfying their performance requirements.

Research on real-time ROS 2 processing chains has started
only recently. Casini et al. [6] proposed a pioneering analysis

technique to upper bound the response time of processing
chains by modeling ROS executors with resource reservations.
Tobias et al. [5] presented enhanced analysis to offer tighter
bounds. These studies laid the groundwork to analyze systems
developed using ROS 2. On the other hand, we took a
completely different approach. While previous studies focused
on the unmodified, default ROS 2 scheduling scheme, we
found that major limitations, such as long end-to-end latency
and pessimism in the analysis, are due to the poor support
of prioritization in the existing scheduling scheme. As a
result, we developed PiCAS [8], a priority-driven chain-aware
scheduling framework for ROS 2, to improve the end-to-end
latency of processing chains with predictable bounds. PiCAS
also answers how to allocate resources to further improve
responsiveness of critical chains.

While some real-time challenges have been studied as
discussed above, there are still many open problems that need
to be explored for ROS 2. All previous work on ROS 2
processing chains, including our own, only assume single-
threaded executors. However, as we will show in Fig. 3, multi-
threaded executors have the potential to offer better latency
and higher throughput in a system equipped with multiple
CPU cores. Besides, since ROS 2 is being widely used
in the development of intelligent autonomous systems with
machine learning algorithms, unpredictable timing behavior
could appear from shared hardware accelerators such as GPU
and FPGA, which would be a serious problem in resource-
constrained embedded robotic platforms.

In this paper, we will explore the potential of the priority-
driven scheduling approach to improve the real-time perfor-
mance and predictability of ROS 2. We will first review our
prior work, PiCAS, and then evaluate it on Raspberry Pi 4 with
the reference system [3], which was developed by Apex.AI to
benchmark the performance of ROS 2 executors under real-
world autonomous driving scenarios. Then we will discuss
the two open problems that we are currently working on, i.e.,
multi-threaded executor design and real-time GPU acceleration
support, which would be essential for ROS 2 to serve as a
practical yet reliable real-time software infrastructure.

II. PRIORITY-DRIVEN CHAIN-AWARE SCHEDULING

A. Background

Our priority-driven chain-aware scheduling, PiCAS [8], was
motivated by the two major problems of the current ROS
2 framework. First, ROS 2 consists of multiple layers of

28



abstractions that are not aware of the criticality of processing
chains. The unique scheduling behavior of an executor, which
schedules timer callbacks always first, makes other callbacks’
priorities ineffective. Hence, the current ROS 2 executor
ignores the urgency of task chains and results in a fairness-
oriented scheduling behavior. Second, the current ROS 2
framework lacks systematic support for resource allocation
and latency analysis. This causes poor resource utilization and
non-deterministic end-to-end behavior.

To solve these issues, PiCAS enables prioritization of
critical computation chains across complex abstraction layers
of ROS 2 (see Fig. 1 for overview). We re-designed the
current ROS 2 scheduling architecture with the following
considerations: (1) higher-priority chain should execute earlier
than lower-priority chains, and (2) if the instances of the
same chain are assigned to the same CPU core, they should
execute in their arrival order. The latter is to reduce self-
interference between instances of the same chain, thereby
preventing undesirable latency increases.

Across executors

Single chain
on one CPU

Multiple 
chains

on one CPU

Within an executor

Single 
chain

Multiple 
chains

High priority 
chain

Chain 1

Chain 2

or

High priority 
executor

or

𝜏ଵ 𝜏ଶ 𝜏ଷ 𝜏ସ

Low priority High priority

𝜏ଵ 𝜏ଶ 𝜏ଷ

𝜏ଵ 𝜏ଶ 𝜏ଷ 𝜏ସ

𝜏ଵ 𝜏ଶ 𝜏ଵ 𝜏ଶ

𝜏ଷ 𝜏ଵ 𝜏ଷ 𝜏ଵ

Scheduling strategies

Priority assignment

Step 2: Assign from low to high priority

Step 1: Sort in ascending order of chain

Chain-aware node allocation

……

……

……

Sorted nodes

Allocated nodes to 
executors

Allocated executors 
to CPU cores

Support to substantialize 
scheduling strategies

Fig. 1: PiCAS framework

Based on the above considerations, we developed chain
scheduling strategies within an executor and across executors.
To realize these scheduling strategies, PiCAS introduces a
callback priority assignment scheme. It assigns strictly higher
priority to callbacks of more critical chains, and within each
chain, it prioritizes callbacks in the front to those in the back
to avoid the self interference problem. PiCAS also includes a
chain-aware node allocation algorithm to allocate given nodes
to executors, and then maps executors to available CPU cores
while following the scheduling strategies. This algorithm tries
to allocate all nodes associated with the same chain to the same
CPU core whenever possible in order to minimize interference
between different chains.

B. Evaluation of Priority-Driven Scheduling

To understand the benefit of the priority-based scheduling
approach under a realistic scenario, we evaluate PiCAS with
the reference system [3] that was developed by Apex.AI
and introduced at the ROS 2 Real-Time Executor Workshop
held in conjunction with ROSCon 2021 [2]. The reference
system resembles the lidar-based perception pipeline of Auto-
ware.Auto [4], as illustrated in Fig. 2. We integrated PiCAS

Front Lidar Driver Rear Lidar Driver Point Cloud Map Visualizer Lanelet2 Map

Front Points Transformer Rear Points Transformer Point Cloud Map Loader Parking Planner

Voxel Grid Downsampler

Lane Planner

Ray Ground Filter Object collision Estimator

MPC Controller

Euclidean Cluster Settings

Intersection Output

Euclidean Cluster Detector

Point Cloud Fusion NDT Localizer

Lanelet2 Global Planner

Lanelet2 Map Loader

Vehicle Interface

Behavior Planner
Vehicle DBW System

: Criticality of chains> > : hot topic path (latency is the one of KPIs)

Fig. 2: Chain configuration of Autoware model

into the reference system running on the Galactic version of
ROS 2 in a Raspberry Pi 4 platform.
Key performance indicators (KPIs). For ease of benchmark-
ing, the reference system evaluates various KPIs such as:
• Latency of hot topic path: In a real-world scenario, the

reference system should recognize obstacles as quickly as
possible to avoid collisions. Thus, the lower latency from
the Front Lidar to the Object Collision Estimator (the red
dotted line shape in Fig 2) is better.

• Number of dropped messages: Since old sensor data is
less valuable than newly sensed data, the old ones can be
dropped in favor of the newest sample, but at the cost of
information is lost. Therefore, the fewer number of dropped
messages is better.

• Timing jitter of Behavior Planner: The Behavior Planner
node should execute periodically, as accurate as possible
according to its set frequency (100 msec). Thus, the lower
jitter and drift of this node are better.

Comparison of approaches. We compare the priority-driven
scheduling approach (ROS2-PiCAS) with the default ROS
2 scheduling scheme (ROS2-default). Two different execu-
tor configurations are considered for ROS2-default: single-
threaded and multi-threaded executors. With the single-
threaded executor, all nodes are allocated to one thread running
on a single CPU core. So, we compare this to PiCAS with
one single-threaded executor. The multi-threaded executor runs
with as many worker threads as the number of available
CPU cores. Since PiCAS does not currently support multi-
threaded executors, we use multiple single-threaded executors
for PiCAS, i.e., four single-threaded executors on four cores
of Raspberry Pi 4, and compare this with the multi-threaded
executor of the default ROS 2.

0

100

200

300

400

500

600

A
ve

ra
ge

 la
te

nc
y 

[m
se

c]

Singlethreaded 
(ROS2-default)

Single executor
(ROS2-PiCAS)

Multithreaded 
(ROS2-default)

Multiple executors
(ROS2-PiCAS)

Fig. 3: Average end-to-end latency of hot topic path

End-to-end latency of hot topic path. Fig. 3 illustrates
the observed average latency of the hot topic path under
four different cases. ROS2-PiCAS with a single executor
reduces average latency by up to 86% compared to the single-
threaded ROS2-default, and shows comparable performance to

2
29



the multi-threaded ROS2-default. This result demonstrates the
significant benefit of the priority-driven scheduling approach,
which help autonomous vehicles recognize obstacles much
faster and avoid them in a timely manner while using the
same amount of resources.

In case of the multi-threaded executor, ROS2-default per-
forms not as good as ROS2-PiCAS with multiple executors.
This is interesting since the default multi-threaded executor
follows the global scheduling approach that is naturally better
in reclaiming unused resources than partitioned scheduling,
which the multiple single-threaded executors of ROS2-PiCAS
represent. We suspect that this is not due to an inherent flaw
of the multi-thread executor but due to the lack of proper
prioritization support.

TABLE I: Number of dropped messages

Singlethreaded
(ROS2-default)

Single executor
(ROS2-PiCAS)

Multithreaded
(ROS2-default)

Multi. executors
(ROS2-PiCAS)

Mean 0.8681 0.0282 0 0

STD 0.3347 0.1651 0 0

Number of dropped messages. Table I shows the number
of dropped messages. As expected, ROS2-PiCAS outperforms
ROS2-default in a single-threaded executor setup. Note that we
do not see any message drops for the multi-threaded ROS2-
default and the ROS2-PiCAS with multiple executors.

0

50

100

150

200

250

Pe
rio

d 
[m

se
c]

Multi-threaded
(ROS2-default)

Single executor
(ROS2-PiCAS)

Single-threaded
(ROS2-default)

Multiple executors
(ROS2-PiCAS)

Fig. 4: Behavior Planner jitter

Behavior Planner jitter. Fig 4 illustrates the observed execu-
tion period of the Behavior Planner. Any deviation from 100
msec indicates a timing jitter, so a narrow range of observed
values is better. As can be seen, ROS2-PiCAS outperforms
ROS2-default in all configurations. Such a small uncertainty
of the priority-driven scheduling approach can help improve
the predictability of the ROS 2 framework.

III. REAL-TIME SUPPORT FOR MULTI-THREADED
EXECUTORS

Although ROS 2 provides multi-threaded executors, prior
studies [5, 6, 8] have considered only single-threaded execu-
tors. In general, multithreading allows effective utilization of
multiple processors and helps improve system concurrency
and throughput. The benefit of real-time multithreading has
been demonstrated in the context of self-driving cars [10]. We
also have observed that the default multi-threaded executor of
ROS 2 has better latency performance than its single-threaded
counterpart, as shown in Fig. 3. Despite such a benefit of the
ROS 2 multi-threaded executor, to the best of our knowledge,
there is no prior work on analyzing and improving the timing
behavior of the multi-threaded executor for ROS 2. Therefore,

in this section, we discuss challenges that arise with the ROS 2
multi-threaded executor.

In order to make use of the multi-threaded executor in a
system with stringent timing requirements, the very first step
required is to formally analyze its timing behavior as people
did for the single-threaded executor. However, unlike the
single-threaded executor, the analysis of processing chains on a
multi-threaded executor is more challenging due to the runtime
callback distribution across multiple threads and the unsyn-
chronized polling points of the threads. Such challenges makes
it difficult to extend the existing ROS 2 analysis techniques
to multi-threaded executors directly. For analysis purposes,
we are currently modeling single-threaded and multi-threaded
executors as partitioned and global schedulers, respectively.
Throughout this modeling, we aim to extend the conventional
non-preemptive global task scheduling techniques, e.g., [11],
to the ROS 2 environment by taking into account semantic
differences such as callback dependencies, chains, polling
points, and ready set management. We are also working
on extending PiCAS to multi-threaded executors to enable
priority-driven scheduling and to achieve better end-to-end
latency and predictability. Once done, we can compare the
performance of priority-driven callback scheduling in a multi-
threaded executor vs. in multiple single-threaded executors.

ROS 2 provides an interesting feature for multi-threaded
executors, called the callback group, which can be used to
enforce concurrency rules for callbacks. There are two types
of callback groups: mutually-exclusive and reentrant. Based
on the type of the callback groups, the timing behavior of the
system and the end-to-end latency of chains will be different.
This opens new problems that motivated us to further explore:
i) how these callback groups might affect the timing behavior
of ROS 2 executors, ii) how we can analytically model the end-
to-end latency of chains for each type, and iii) how these can
be configured to improve real-time performance. We believe
studies on these issues can lead to more efficient scheduling
approaches in ROS 2, e.g., assigning callbacks to groups and
then scheduling the callback groups.

IV. CHALLENGES WITH REAL-TIME GPU ACCELERATION

This section addresses issues with applications that rely on
GPU accelerated kernels. Many applications designed with
ROS2 utilize asynchronous and unstructured models for kernel
execution on GPU accelerators. While this encourages direct
resource allocation and accelerator kernel calling from individ-
ual ROS2 nodes, this may incur unpredictable real-time behav-
ior, especially when many nodes request the same accelerator
resource. Utilizing shared accelerator resources for complex
software stacks, including autonomous vehicle (AV) stacks, is
inevitable with modern computer and accelerator architecture.
Our on-going work focuses on providing real-time GPU kernel
execution management on resource-constrained systems.

A. Problems with Shared Accelerators

With an increasing amount of shared accelerator utilization
among complex software stacks, comes consequences that

3
30



compromise real-time guarantees for safety-critical workflows.
For ROS and ROS2 specific AV stacks, many individual
processing chains may necessitate the use of GPU-based accel-
erators for various perception, localization, mapping, and other
tasks. For systems that maintain ample accelerator resources,
blocking time for high-priority chains induced by GPU kernel
execution from low-priority chains may be uncommon. How-
ever, for resource-constrained systems, high-priority chains
may suffer from severe delays and deadline misses due to
priority inversion when low-priority chains have been already
utilizing the shared accelerator resource.

B. Maintaining Real-time Support with Accelerators

A solution that we are currently exploring to address to these
dependability issues relies on a GPU-server-based approach
within the ROS2 software stack. In conventional autonomous
vehicle software design, the callbacks of each node directly
invoke the GPU to execute kernels. Our current approach will
utilize a separate ROS2 node that acts as a GPU server –
handling GPU access requests from all nodes in the stack.
This idea is motivated by our earlier work on real-time GPU
server [9]. The GPU server architecture will employ priority-
based scheduling with support for request-level preemption.
We are also considering concurrent kernel execution with
real-time spatial GPU multitasking [13, 14] and prioritized
CUDA streams [15] for better resource utilization and lower
response time. In Fig. 5, describing the overall architecture,
ROS nodes will request that a specific GPU kernel be executed
on a specific set of data. Intuitively, this will cause additional
delays due to extra memory copies between nodes. However,
minimizing data copy delays with efficient zero-copy IPC
methods like Iceoryx [1] and shared memory transport allows
this architecture to support a very low-overhead accelerator
resource management framework. The GPU-server node will
maintain a structure of all GPU kernels and will schedule
the execution of a kernel on a node’s data in accordance
with the corresponding chain’s priority. Handling GPU kernel
scheduling in the software stack rather than leaving it to
the OS or GPU driver will give applications granular control
over how specific chains access the GPU. Other methods of
GPU multitasking and scheduling, such as Nvidia’s Multi-
Process Service (MPS) [12], can allow for multiple processes
to perform concurrent kernel execution on different SM’s, but
do not provide any real-time, priority-based, or preemptive
support for processing chains in ROS 2.

V. CONCLUSION

In this paper, we presented the benefit of enabling priority-
driven scheduling in the ROS 2 framework and discussed open
challenges. We integrated our prior work on priority-driven
chain-aware scheduling into the reference autonomous system
and evaluated several key performance indicators under a real-
world scenario. The results of the case study demonstrate that
the priority-driven scheduling approach significantly outper-
forms the existing ROS 2 scheduling scheme with respect to
the average end-to-end latency, dropped messages, and jitter of

GPU Kernel Scheduling NodeROS Nodes

System Shared  
Memory

CPU Task

Topic Request Send/Receive

Zero Copy IPC

System
Shared

Memory

Process
Memory

iGPU Task

Discrete  
GPU TaskGPU Memory

M
em

ory C
opy

Asynchronously 
Spawned  

GPU Threads 

GPU Tasks

Fig. 5: ROS 2 GPU server framework

periodic nodes. However, previous work, including our own,
has been conducted under the assumption of a single-threaded
executor, and the extension of existing techniques to the multi-
threaded executor still remains as open problems. Besides,
real-time support of ROS 2 with shared accelerators such as
GPU and FPGA is another challenge that should be resolved
for modern intelligent applications. We discussed these chal-
lenges and outlined directions to address them following the
priority-driven approach.

Our focus in this paper has been around the default ROS
2 executor design and implementation, but there are existing
executors, such as the cbg executor [16] and those proposed
in the ROS 2 Executor Workshop [2]. We plan to evaluate the
effectiveness of our approach against them in the future.

ACKNOWLEDGMENT

We gratefully acknowledge support from the ONR grant
N00014-19-1-2496 and the NSF awards 1943265 & 1955650.

REFERENCES
[1] Eclipse iceoryx - true zero-copy inter-process-communication. https:

//github.com/eclipse-iceoryx/iceoryx, accessed March 2022.
[2] ROS2 Executor: How to make it efficient, real-time and deterministic?

https://www.apex.ai/roscon-21, accessed March 2022.
[3] ROS2 Real-Time Working Group: Reference system. https://github.com/

ros-realtime/reference-system, accessed March 2022.
[4] Autoware Foundation. https://gitlab.com/autowarefoundation/autoware.

auto, accessed May 2022.
[5] T. Blaß et al. A ROS 2 response-time analysis exploiting starvation

freedom and execution-time variance. In RTSS, 2021.
[6] D. Casini et al. Response-time analysis of ROS 2 processing chains

under reservation-based scheduling. In ECRTS, 2019.
[7] H. Choi et al. Chain-based fixed-priority scheduling of loosely-

dependent tasks. In ICCD, 2020.
[8] H. Choi et al. PiCAS: New design of priority-driven chain-aware

scheduling for ROS2. In RTAS, 2021.
[9] H. Kim et al. A server-based approach for predictable GPU access with

improved analysis. Journal of Systems Architecture, 88:97–109, 2018.
[10] J. Kim et al. Parallel scheduling for cyber-physical systems: Analysis

and case study on a self-driving car. In ICCPS, 2013.
[11] J. Lee. Improved schedulability analysis using carry-in limitation

for non-preemptive fixed-priority multiprocessor scheduling. IEEE
Transactions on Computers, 66(10):1816–1823, 2017.

[12] Nvidia. Nvidia multi-process service. https://docs.nvidia.com/deploy/
mps/index.html, accessed March 2022.

[13] S. Saha et al. STGM: Spatio-temporal GPU management for real-time
tasks. In RTCSA, 2019.

[14] Y. Wang et al. Balancing energy efficiency and real-time performance
in GPU scheduling. In RTSS, 2021.

[15] Y. Xiang and H. Kim. Pipelined data-parallel CPU/GPU scheduling for
multi-DNN real-time inference. In RTSS, 2019.

[16] Y. Yang and T. Azumi. Exploring real-time executor on ROS 2. In
ICESS, 2020.

4
31



Minimal-Overlap Centrality-Driven Gateway
Designation for Real-Time TSCH Networks

Miguel Gutiérrez Gaitán∗†‡
∗Facultad de Ingenierı́a

Universidad Andres Bello
Santiago, Chile

miguel.gutierrez@unab.cl

Pedro M. d’Orey
†CISTER Research Center

Universidade do Porto
Porto, Portugal
ore@isep.ipp.pt

Pedro M. Santos
†CISTER/ISEP

Politécnico do Porto
Porto, Portugal
pss@isep.ipp.pt

Luı́s Almeida
‡CISTER/FEUP

Universidade do Porto
Porto, Portugal
lda@fe.up.pt

Abstract—This research proposes a novel minimal-overlap
centrality-driven gateway designation method for real-time wire-
less sensor networks (WSNs). The goal is to enhance network
schedulability by design, particularly, by exploiting the relation-
ship between path node-overlaps and gateway designation. To this
aim, we define a new metric termed minimal-overlap network cen-
trality which characterizes the overall overlapping degree between
all the active flows in the network when a given node is selected as
gateway. The metric is then used to designate as gateway the node
which produces the least overall number of path overlaps. For the
purposes of evaluation, we assume a time-synchronized channel-
hopping (TSCH) WSN under centralized earliest-deadline-first
(EDF) scheduling and shortest-path routing. The assessment of
the WSN traffic schedulability suggests our approach is dominant
over classical network centrality metrics, namely, eigenvector,
closeness, betweenness, and degree. Notably, it achieves up to
50% better schedulability than a degree centrality benchmark.

Index Terms—Centrality, Network design, TSCH, WSN.

I. INTRODUCTION

The Industrial Internet of Things (IIoT) is dramatically
increasing the adoption of wireless technologies in several
industries [1]. Wireless sensor networks (WSNs), as one
of the key enabling technologies for IIoT, allows gathering
(wirelessly) critical sensor data in a variety of industrial
fields [2], ranging from manufacturing to automotive. Time-
synchronized channel-hopping (TSCH) is one of the major
multi-channel medium access control (MAC) protocols for
industrial WSNs offering improved reliability and support for
real-time communication [2]–[4].

Industrial WSNs are usually formed by tens to hundreds of
devices that deliver deadline-constrained sensor data toward
a common gateway [3]. The gateway - an essential node
enabling seamless communication with external entities - also
plays a role in real-time network operation. In particular, our
recent study on TSCH WSNs [5] has shown that a simple
but rather effective criterion for gateway designation can
remarkably enhance real-time WSN performance by design.
Resorting to the notion of network centrality (i.e., a relative
measure of the importance of the node according to its position
in the network), the authors explored common metrics from
social network analysis for improved schedulability. Despite
the promising results, none of the assessed metrics dominated
over the others and optimal performance was far from being
achieved. A challenge we attempt to address herein.

We propose a novel centrality-driven gateway designation
method for real-time WSNs based on the reduction of path
node-overlaps in shortest path routing. We deal with alike
foundational questions of work [5], but we solve the gateway
designation problem by proposing a novel flow-informed
metric termed minimal-overlap centrality. This metric requires
knowing the routing approach beforehand to compute the
overall overlapping degree resulting from the encountering
of all active flows in the network elements. This measure is
inspired by the minimal-overlap routing protocol [4], which
reduces the overall overlapping degree of the network using a
greedy heuristic that weights the network links based on the
node-overlaps between flows.

By contrast, this work reduces the network global over-
lapping degree by judiciously choosing as gateway the node
that minimizes the overall number of overlaps. While a
schedulability-optimal choice could be made using enough
computational power, we explore here a less demanding
method that does not require fully assessing network schedu-
lability to achieve near optimal real-time performance. The
method resorts to shortest path routing for simplicity, but the
concept can be easily extended to different routing schemes
without loss of generality. To our knowledge, this is the
first centrality-driven gateway designation method specifically
designed to reduce end-to-end deadline misses in WSNs.

II. SYSTEM MODEL

A. Wireless Network

The communication network is abstracted as an undirected
graph G = (V,E) where V is the set of vertices or nodes and
E is the set of edges or links between those vertices. The order

GatewayNetwork
Manager

Sensor

Sensor

Process 
Automation 

Controller

Fig. 1: An illustration of a multi-hop WSN.

32



of graph G is denoted as N = |V |, of which a set of N − 1
nodes act as sensor nodes while one node acts as a gateway.
The gateway node is used for enabling communication with
external entities (e.g., network manager) forming a wireless
mesh network with the remaining nodes (Fig. 1).

Multiple access is governed using TSCH protocol, one of
the operating modes of IEEE 802.15.4 standard. TSCH uses
fixed size TDMA slots combined with multi-channel hopping,
allowing concurrent transmission over up to m = 16 different
channels with global synchronization. A time slot allows
transmitting a single packet and receiving the corresponding
acknowledgement. All packet transmissions are managed cen-
trally using an earliest-deadline-first (EDF) scheduling policy
and a (hop-count) shortest path routing algorithm.

B. Real-Time Flows

In terms of traffic flow, a subset of sensor nodes transmit
(potentially an infinite number of) deadline-constrained data
with a fixed period Ti; the remaining nodes act as relays to
transmit it towards the gateway. The resulting set of n real-time
data flows is denoted as F = {f1, f2, . . . , fn}. Each data flow
is characterized by a 4-parameter tuple fi = (Ci, Di, Ti, φi),
where Ci is the transmission time between the source node
si and the gateway, Di is the (relative) deadline, and φi is
the multi-hop routing path. The term fi,γ represents the γth

transmission of flow fi released at time ri,γ such that Ti =
ri,γ+1 − ri,γ . fi,γ is constrained to reach the gateway before
its absolute deadline [di,γ = ri,γ +Di].

C. Real-Time Performance

The real-time performance of the centralized TSCH network
under EDF [6] is evaluated resorting to the supply/demand-
bound based schedulability analysis presented in [7]. The
method evaluates if the supply-bound function (sbf) [i.e.,
minimal transmission capacity offered by a WSN with m
channels] is equal or larger than the forced-forward demand-
bound function [8] for WSN (FF-DBF-WSN) [i.e., upper bound
on the maximum demand imposed by a set of n time-sensitive
flows assessed in any interval of length `]. Formally, this WSN
traffic schedulability test is posed as:

FF-DBF-WSN(`) ≤ sbf(`), ∀` ≥ 0 (1)

The sbf(`) is such that satisfies the following conditions:

sbf(0) = 0 ∧ sbf(`+ h)− sbf(`) ≤ m× h,∀`, h ≥ 0 (2)

The upper bound on network demand FF-DBF-WSN [7] is
composed by two terms, namely i) channel contention (i.e.,
accounts for mutually exclusive scheduling on multiple chan-
nels, being equivalent to FF-DBF for multiprocessors [8]) and
ii) transmission conflicts (i.e., delay contribution due to
multiple flows encountering on a common half-duplex node):

FF-DBF-WSN(`) =

CHANNEL CONTENTION︷ ︸︸ ︷
1

m

n∑

i=1

FF-DBF(fi, `) +

n∑

i,j=1

(
∆i,j ·max

{⌈ `
Ti

⌉
,
⌈ `
Tj

⌉})

︸ ︷︷ ︸
TRANSMISSION CONFLICTS

(3)

where ∆i,j is a path overlapping factor between any pair of
flows fi and fj ∈ F (with i 6= j) as defined in [9]. Formally,
this factor is defined as:

∆i,j =

δ(ij)∑

k=1

Lenk(ij) −
δ′(ij)∑

k′=1

(Lenk′(ij) − 3) (4)

where δ(ij) indicates the total number of overlaps between fi
and fj of which δ′(ij) are the ones larger than 3. The length
of the kth and k′th path overlap between fi and fj are named
Lenk(ij) and Lenk′(ij), respectively, with k ∈ [1, δ(ij)] and
k′ ∈ [1, δ′(ij)]. In the convergecast case all paths are directed
to the root and thus only one path of arbitrary length is shared
between any pair of flows.

III. MINIMAL-OVERLAP CENTRALITY-DRIVEN GATEWAY
DESIGNATION FOR REAL-TIME WSNS

Given the system model presented in Section II, we consider
the problem of how to designate a node as gateway for im-
proved WSN traffic schedulability. To this purpose, resorting
to the notion of network centrality, we propose a new centrality
metric that characterizes the relationship between the overall
path node-overlaps and gateway designation. Similarly to [5],
the proposed metric is then used to designate as gateway the
node with the highest centrality score. Classical network cen-
trality metrics are also considered for benchmarking purposes.

A. Minimal-Overlap Network Centrality

Specifically, we propose a new network centrality metric
termed minimal-overlap (MO) centrality. This metric is built
upon the computation of the overall path overlapping resulting
from the superposition of all flow routes in the network when
directed to a given node vq ∈ V . The importance (centrality)
of the node vq is reflected by the following expression:

MO(vq) =
1∑n

i,j=1∧i6=j ∆q
i,j + 1

(5)

where the factor ∆q
i,j is the overlap contribution from flows

fi and fj (Eq. 4) when their routes φi and φj are directed
toward node vq , and n is the number of flows in the set F .
Note that we consider only a subset of N−n nodes as gateway
candidates vq , since the remaining are defined as sources.
Without loss of generality, we also assume the routes are
computed using a hop-count-based shortest-path algorithm.

33



1 5 10 15 20 25
Number of flows (n)

0

0.5

1

S
ch

ed
. R

at
io

d = 0.1, N = 75, m = 16

Min. Overlap
Eigenvector
Closeness
Betweenness
Degree
Random

(a)

1 5 10 15 20 25
Number of flows (n)

0

0.5

1

S
ch

ed
. R

at
io

d = 0.5, N = 75, m = 16

Min. Overlap
Eigenvector
Closeness
Betweenness
Degree
Random

(b)

1 5 10 15 20 25
Number of flows (n)

0

0.5

1

R
el

. R
at

io

d = 0.1, N = 75, m = 16

Min. Overlap
Degree
Random

(c)

1 5 10 15 20 25
Number of flows (n)

0

0.5

1

R
el

. R
at

io

d = 0.5, N = 75, m = 16

Min. Overlap
Degree
Random

(d)

Fig. 2: Top: Schedulability ratio of 1000 random topologies for different number of flows with target density 0.1 (a) and 0.5 (b) resorting to
the gateway designation methods based on i) classical network centrality metrics (e.g. degree centrality) and ii) the proposed minimal-overlap
network centrality. Bottom: the deviation in terms of schedulability from the best and worst possible gateway assignments.

B. Classical Network Centrality Metrics

For comparison, we consider the 4 most common net-
work centrality metrics in the literature, namely, eigenvector,
closeness, betweenness and degree. For completeness, the
definitions of those metrics are given in Table I 1. More details
on these metrics within the context of gateway designation in
real-time WSNs can be found in [5].

TABLE I: Classical Centrality Metrics.

Metric Definition

Eigenvector EC(vq) =
1

λmax(A)
·∑N

j=1 aj,q · xj
Closeness CC(vq) =

1∑
p6=q distance(vp,vq)

Betweenness BC(vq) =
∑
q 6=r

spr,s(vq)

spr,s

Degree DC(vq) =
degree(vq)

N−1

IV. PERFORMANCE EVALUATION

A. Simulation Setup

Wireless network. We consider 1000 random topologies built
using a synthetic generator of network graphs. Each topology
is generated with a target node density d using a sparse
uniformly distributed random matrix with dimension N ×N .
We use N = 75 for all experiments. We consider that the
TSCH network operates with m = 16 channels.
Network flows. A subset of n ∈ [1, 25] vertices of G is
chosen randomly as source nodes transmitting periodically

1Notation. EC: λmax(A) is the largest eigenvalue of the adjacency matrix
A = [aj,q ]N , where aj,q is the matrix element at row j and column q, and
xj is the jth value of the eigenvector x of graph G. CC: distance(vp, vq)
is the shortest-path (hop-count) distance between vertices vp and vq , with
p 6= q, ∀ vp ∈ V . BC: spr,s is the number of shortest paths between any
pair of vertices vr and vs, and spr,s(vq) is the number of those paths passing
through node vq ; DC: degree(vq) denotes the number of edges of node vq
which are directly connected to any of the rest N − 1 nodes in the graph G.

deadline-constrained data to the gateway. The parameters of
each data flow fi = (Ci, Di, Ti, φi) are defined as follows.
Ci is computed by multiplying the time slot duration (10 ms)
with the number of hops in the path φi. Di is set in implicit-
deadline model, i.e. Di = Ti. Ti is harmonic and randomly
generated in the range of [24, 27] as in [5]. This implies a
super-frame length of H = 1280 ms.

Real-time assessment. We assess schedulability over a time
interval equal to the super-frame, i.e., ` = H , and when all the
m = 16 channels are available. EDF and shortest path routing
are assumed for all transmissions. Concerning ∆i,j , we use
precise computation derived from the network topologies.

B. Results & Discussion

Schedulability Analysis. Fig. 2 presents the schedulability
ratio as a function of the number of flows considering two net-
work densities, namely 0.1 (left) and 0.5 (right), and different
methods for gateway designation, namely minimal-overlaps
and classic network centrality-based. We also compute the best
and worst schedulability-driven gateway selections obtained
with extensive search as well as a random selection. As ex-
pected, the schedulability ratio decreases for larger number of
flows in all configurations due to the larger channel contention
and transmission conflicts. Conversely, higher network density
increases the number of potential paths between any given pair
of nodes, favoring schedulability.

The results show that the minimal-overlap gateway designa-
tion method achieves higher schedulability for all numbers of
flows and densities when comparing with a method based on
classical centrality metrics (e.g. degree or betweenness central-
ity). We argue this is caused by the MO method decreasing,
by design, the number of overlapping paths allowing to reduce
transmission conflicts (Fig. 3), thus improving the timely
delivery of data. As expected, the proposed method is also

34



1 5 10 15 20 25
Number of flows (n)

0

10

20

30
A

vg
. O

ve
rla

ps

d = {0.1,1.0}, N = 75, m = 16

Min. Overlap
Degree

Fig. 3: Average number of overlaps of 100 random topologies when
varying network flows for two gateway designation methods and two
extreme densities, namely 0.1 (solid line) and 1.0 (dotted line).

1 5 10 15 20 25
Number of flows (n)

0

0.5

1

A
vg

. E
xe

c.
 T

im
e 

(s
) d = {0.1,1.0}, N = 75, m = 16

Min. Overlap
Degree
Best

Fig. 4: Execution time for different gateway designation methods
considering up to 25 network flows and two extreme target densities,
namely 0.1 (solid line) and 1.0 (dotted line).

clearly superior to the random baseline, further demonstrating
the significance of judicious gateway designation.

We also analyze how the proposed method deviates from the
system optimal gateway election (Figs. 2c and 2d). The metric
relative ratio is defined as the ratio between the schedulability
ratio of a given method to the schedulability ratio of the best
and worst performing nodes in the network, with a value of
1 denoting best and 0 the worst performance. The results
show the performance of the proposed method is only slightly
below the best method, having the maximum degradation of
∼20% for a density of 0.1 and 20 simultaneous flows. We
highlight this degradation is negligible for larger densities
(e.g. d = 0.5) since the overall overlapping degree decreases
for increasing density (Fig. 3), which was also confirmed by
previous studies [4]. Finally, the results in Fig. 2 also reveal
the performance improvements of the proposed method, in
general, increase for higher density and higher number of flows
when comparing with other centrality-based metrics or random
gateway assignment.
Computational Cost. Fig. 4 depicts the average execution
time for the different gateway designation methods and the op-
timal gateway designation. Regarding the classical centrality-
based designation method, we solely present the result for
degree centrality for visual clarity and because this has the
lowest execution time among all metrics. We also present
result for two extreme density values of 0.1 (solid line) and 1
(dashed lines). The setup for this experiment used MATLAB
R2020b on Ubuntu 18.04 LTS on a laptop with an Intel Core
i7-6500U CPU at 2.5GHz and 4GB of DD3 RAM.

The results confirm the low execution time of the degree-
centrality gateway designation. On the other hand, minimal
overlaps designation considerably decreases the execution
time when compared against optimal gateway designation,
particularly for higher number of flows. Note that the optimal

method uses extensive search with full schedulability analysis
for each case, while the MO metric just requires computing
the number of overlaps in the network given a set of flows.
The results also show that the density has a minimal impact
on the average execution time. Overall, the proposed method
provides a good trade-off between achievable schedulability
ratio (near optimal) and computational cost (about half the
value of the optimal method).

V. CONCLUSIONS

This paper presented a novel gateway designation method
for real-time WSNs based on minimizing the number of
path overlaps in the network. Simulation results show im-
proved schedulability ratio when comparing with other classic
centrality-based gateway selection methods, achieving nearly
optimal performance under specific conditions (e.g. larger net-
work densities) while showing lower execution times than the
optimal case. As future work, we intend to extend the method
to multiple gateways, as well as to evaluate its applicability in
the context of wireless edge-node placement.

ACKNOWLEDGMENT

This work was partially supported by National Funds
through FCT/MCTES (Portuguese Foundation for Sci-
ence and Technology), within the CISTER Research Unit
(UIDB/04234/2020); by the Operational Competitiveness Pro-
gramme and Internationalization (COMPETE 2020) under the
PT2020 Agreement, through the European Regional Devel-
opment Fund (ERDF); also by FCT and the ESF (European
Social Fund) through the Regional Operational Programme
(ROP) Norte 2020, under PhD grant 2020.06685.BD.

REFERENCES

[1] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial
internet of things: Challenges, opportunities, and directions,” IEEE Trans.
on Industrial Informatics, vol. 14, no. 11, pp. 4724–4734, 2018.

[2] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6TiSCH: deter-
ministic IP-enabled industrial internet (of things),” IEEE Communications
Magazine, vol. 52, no. 12, pp. 36–41, 2014.

[3] J. Wang, T. Zhang, D. Shen, X. S. Hu, and S. Han, “APaS: An
adaptive partition-based scheduling framework for 6TiSCH networks,” in
2021 IEEE 27th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pp. 320–332, IEEE, 2021.

[4] M. G. Gaitan, L. Almeida, P. M. Santos, and P. M. Yomsi, “EDF
scheduling and minimal-overlap shortest-path routing for real-time TSCH
networks,” in Workshop on Next Generation Real-Time Embedded Sys-
tems (NG-RES), vol. 87, (Virtual), pp. 2–1, 2021.

[5] M. G. Gaitan, L. Almeida, A. Figueroa, and D. Dujovne, “Impact
of network centrality on the gateway designation of real-time TSCH
networks,” in IEEE Int. Conference on Factory Communication Systems
(WFCS), pp. 139–142, 2021.

[6] M. G. Gaitan, P. M. Yomsi, P. M. Santos, and L. Almeida, “Work-in-
progress: Assessing supply/demand-bound based schedulability tests for
wireless sensor-actuator networks,” in IEEE Int. Conference on Factory
Communication Systems (WFCS), pp. 1–4, IEEE, 2020.

[7] M. G. Gaitan and P. M. Yomsi, “FF-DBF-WIN: On the forced-forward
demand-bound function analysis for wireless industrial networks,” in
Work-in-Progress Session of the 30th Euromicro Conference on Real-
Time System (ECRTS), pp. 13–15, 2018.

[8] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller, “Im-
proved multiprocessor global schedulability analysis,” Real-Time Systems,
vol. 46, no. 1, pp. 3–24, 2010.

[9] C. Xia, X. Jin, and P. Zeng, “Resource analysis for wireless industrial
networks,” in Int. Conference on Mobile Ad-Hoc and Sensor Networks
(MSN), pp. 424–428, IEEE, 2016.

35



No-more-unbounded-blocking queues: bounding
transmission latencies in real-time edge computing

Gabriele Serra
Scuola Superiore Sant’Anna

Pisa, Italy
gabriele.serra@santannapisa.it

Pietro Fara
Scuola Superiore Sant’Anna

Pisa, Italy
pietro.fara@santannapisa.it

Abstract—Nowadays, with advancements in computing power
and energy efficiency, embedded system platforms are becoming
able to provide services that, previously, required the cloud to be
served. Accordingly, the edge computing paradigm is becoming
increasingly popular, as it allows, among other advantages, to
foster security and privacy preservation by processing data at the
origin. On the other hand, these systems demand predictability
across the edge-to-cloud continuation. Regardless of the com-
munication link used by the edge node, tasks send out data
employing a transmission queue; for system-designer, analyzing
the time behavior of a task becomes challenging when each task
has to wait a variable amount of time to send a packet. This
work presents a model to analyze the different sources of latency
introduced when dealing with a communication interface. The
mentioned model ensures that the data traffic does not exceed
the transmission queue limit to avoid unbounded blocking on
task execution.

I. INTRODUCTION

Embedded systems are every day more pervasive in human-
beings lives: they are used in any kind of environment, ranging
from agriculture to transports; they fulfill evermore functions,
of which some are related to the safety of environments or
people. Further, with technology advancements, embedded
system platforms are becoming more powerful and they are
able to provide services that, until few years ago, required
server to be accomplished. Therefore, the edge computing
paradigm is becoming increasingly popular. Processing data
closer to its origin drastically reduces the amount of data sent
to the cloud and, therefore, facilitates real-time computation,
reduces energy consumption (together with carbon footprint)
and help preserving data privacy. However, when the functions
performed by the edge-computing system need to interact with
the external environment, the predictability across the edge-to-
cloud continuum is a key requirement. In the meantime, the
use of system resources must be kept efficient.

Especially when dealing with connected systems, the edge
computing nodes are required to deliver a result within a
predefined deadline; the result typically consist in a chunk
of data to be transmitted across the network. Regardless the
communication mechanism used by the node, commonly the
sender task places the packet in a transmission queue. When
the queue reaches the maximum queue size, the task must
wait an unbounded amount of time to transmit the packet.
Furthermore, the device transmission protocol takes some time
to be performed. Indeed, as a consequence, the communication

device introduces latencies between the edge node and the
cloud. This makes particularly challenging to analyze the time
behavior of the system. While it is not possible to bound the
delay introduced by a complex network such as the global
internet, it is interesting to analyze the type of latencies
introduced by the transmission device and how these latencies
must be accounted when analyzing the timing behavior of the
edge node.
Contribution. In summary, this work makes the following
contributions:

• It presents a detailed analysis of the latencies that a packet
can experience during the transmission phase in an edge
node

• It derives an analysis that prevent device transmission
queue to be full, in order to bound the time required for
a task to send data through the communication peripheral

Paper structure. The remainder of this paper is organized
as follows. Section II reviews the related work. Section III
presents the system by considering task model and commu-
nication assumptions. Section IV analyzes queueing effects
and delays in inter-replica communications and Section V
concludes the paper.

II. RELATED WORK

In the last few years, edge computing has become more
popular due to the increase in performance and the decrease
in the size of microcontrollers and devices. A particular
architecture, called Mobile Edge Computing (MEC), is gaining
more attention from researchers, especially for the massive
diffusion of Internet-of-things (IoT) devices. An overview of
this new architecture [8] was presented in 2016. Based on
MEC, many studies have been done to improve the overall
performance of edge-to-cloud applications in terms of latency.
Ren et al. [7] formulated an optimization problem to find the
better solution for splitting the entire computation of a single
task into two different parts: the first one to be executed at the
edge and the second one on the cloud. Another work on latency
optimization based on data compression was presented in 2018
[6]: they analyzed three different computation models: local
compression, edge-cloud compression and partial compression
offloading. In the last model, they formulated an optimization
problem to find the optimal solution in terms of latency.
Latency may also increase because a lot of computation is

36



CLOUD
- Big data processing
- Business logic

EDGE
- Real-time data processing
- Sensing and actuation

SENSORS /
ACTUATORS

EMBEDDED PLATFORM

LAN
GATEWAY

SERVER

SENSOR ACTUATOR

NITX FIFO RX FIFO

ReceiveTransmit

Fig. 1. An overview of the system architecture.

needed to provide services on mobile applications. In [4], Jia
et al. proposed a heuristic offloading method for computation-
intensive applications in MEC, taking into account the cloud
service latencies and computation time and improving it with
load-balancing techniques. In 2017, LAVEA platform [10] was
designed to offload computation between clients and edge
nodes and to let nearby edge nodes collaborate to provide low-
latency video analytics at places closer to the users. Latency
is also depending on how transmission queues are managed.
In [1], Aamir et al. proposed MANET: a new scheme to
improve packet queues management in terms of packet loss
ratio. Another queue management mechanism, based on the
division of the main queue into two sub-queues, has been
developed in [9].

III. SYSTEM MODEL

This work focuses on analyzing delays introduced during
data transmission from an edge node. As multi-core interfer-
ence is outside the scope of this work, the edge node consists
of an embedded system platform with a single processor.
A set of n periodic tasks {τ1, . . . , τn} is executed on the
mentioned processor. Tasks are scheduled through a fixed-
priority preemptive scheduling algorithm and activated all at
the same time without any initial offset. Hence, each periodic
task τi, is characterized by a worst-case execution time Ci, a
release period Ti, and a relative deadline Di ≤ Ti. We denote
with H the hyper-period among all periods of tasks τi.

The node is connected to a communication network CN. To
be as general as possible, this work does not take into account
a specific network link. The edge node exposes, on the CN,
an interface capable of sending data and receiving it. From

now on, we will denote the exposed interfaces of the node as
the node-interface NI. Data transmission via the CN occurs by
acting on a few memory-mapped device registers. An overview
of the architecture of the system considered by our model is
shown in Figure 1.

The NI provides an output (and respectively, an input)
buffer organized as a first-in-first-out (FIFO) queue of qNI

elements, each sized b bytes. Accessing such registers consists
of performing several writing and reading operations on the
memory-mapped device registers. The minimum read/write
rate to access such registers is indicated with β (bytes per
time unit), while the maximum rate is denoted by βmax.
Furthermore, the NI guarantees a minimum transmission rate
on the link that, in this model, is indicated by α (bytes per
time unit).

To send data out from NI, the content of a packet must be
copied from the task memory to the device queue. Memory
write times are generally shorter than read times; however, we
denote with γ minimum read/write rate to access memory. The
model considers a matching rate for read/write operations as
it does not particularly affect the results of this work.

When the NI transmission queue is full, if a task wants to
send data must wait until one of the slots in the queue becomes
empty. For the sake of our model, we are not interested in
analyzing how the NI operates when receiving data.

To summarize, when a task has to send x bytes out, the
NI needs (i) at most x/γ time units to read the data from
the task memory, (ii) at least x/βmax time units and at most
x/β time units to copy the mentioned data into the NI queue
and (iii) at most x/α time units to transmit such data into the
communication link.

A task τi exchanges Mi data packets with a fixed size of
b bytes. Note that not all the periodic tasks may produce data
that must be sent over the network; hence Mi can also be null.

Data transmission is performed through the NI in a mutual-
exclusive way. Thus, each task may have to acquire and release
a lock before and after transmitting each packet. Our model
adopts the immediate priority ceiling (IPC) locking protocol to
avoid priority inversion phenomena. In the case in which all
Mi are different from zero, NI is equivalent to a resource
shared by all tasks under the IPC protocol. Therefore, the
critical sections due to the NI access are practically non-
preemptive.

We indicate the average amount of bytes transmitted through
the NI as B(t).

IV. TRANSMISSION ANALYSIS

This section will analyze the type of latencies introduced
by the NI, deriving a condition to ensure that the number of
packets sent through the NI peripheral does not exceed the
queue limit to avoid introducing unbounded blocking.

A. Latency modeling

Definition 1: ∆NI indicates the amount of time that elapses
since a packet is stored in the transmission queue by the sender
task to the time the packet can be considered sent out and

37



thus available for the subsequent node of the network (that,
commonly, is the network edge router).

In the following subsection, the latency introduced by NI
is studied employing a model commonly used to account for
delays in routers network [2] [5]. Under this model, ∆NI can
be decomposed as a sum of four different components: prop-
agation latency dprop, transmission latency dtrans, processing
latency dproc, queuing latency dqueue.

Therefore, the total latency due to the NI packet transmis-
sion can be computed as:

∆NI = dprop + dtrans + dproc + dqueue

The purpose of this work is not to provide an estimation
of the latency ∆NI but to demonstrate that, adopting our
methodical analysis, that latency can be bounded. In order to
show that for ∆NI exists an upper bound ∆max

NI , we have to
analyze every single component. In the following subsections,
we will investigate all the sources of latency characterizing
each one.

1) Propagation latency: Once bits are pushed in the CN
link, they need to propagate to the other end. Therefore, the
propagation latency depends on the channel length and the
signal propagation speed for the given medium. Commonly,
propagation latency can be computed as the distance between
devices divided by channel propagation speed. The signal
propagation speed is affected by multiple factors. Although
some specific wireless networks (e.g., wireless acoustic net-
works) may have a propagation latency up to several millisec-
onds, in the majority of cases, if the node is connected by
means of a network cable or a wireless network, the latency
due to the propagation speed lies in the order of nanoseconds.
Accordingly, in the following sections, we will neglect the
propagation latency.

2) Transmission latency: The transmission latency is an
amount that represents the time required by the device to
transmit a chunk of bytes into the link and depends on the
device bandwidth. It is computed as the number of bytes to
be pushed in the link over the transmission bandwidth. Given
that each task exchanges data packets with a fixed size of b
bytes, we may indicate dtrans as: dtrans = b

α = σd with σd
being a constant factor to account for the transmission time
demanded by each packet.

3) Processing latency: The processing latency represents
the time required to read and write device registers and
performing register shifts. It is fixed for each packet and
does not depend on the packet length. Therefore we denote
dproc = σo with σo being the maximum data-size-independent
processing overhead.

4) Queueing latency: The queueing latency represents the
amount of time each packet must wait in the queue to be
transmitted in the link. When the queue is empty, and no other
packet is being transmitted, the queueing latency will be null.
Otherwise, a packet’s queueing latency depends on the number
of currently enqueued packets that wait for transmission.

Assuming that each packet transmission costs the equivalent
of the transmission latency dtrans plus the processing latency

dproc , the N−th packet in queue will wait (N−1)·(dtrans+
dproc). Therefore, we can compute the maximum queueing
latency as: dqueue = (qNI − 1) · (σd + σo).

Provided all the mentioned latencies definition, the upper
bound ∆max

NI can be computed as: ∆max
NI = qNI · (σo + σd)

B. Queueing analysis

In our transmission model, we consider the NI queue as a
finite queue. Therefore, when the queue is full, a task cannot
push another packet into it, remaining blocked on the send
operation. A task must perform the send operation on a queue
with available free slots to avoid unbounded blocking.

Let’s assume that the queue can host an infinite number
of packets for the sake of proving the following lemma. Re-
calling the notation used above, that indicates the transmission
bandwidth with α and the average amount of bytes transmitted
through the NI as B(t), we define the transmission interface
utilization average U

NI
(t) as U

NI
(t) = B(t)

α
Lemma 1: The latency component caused by queuing dqueue

can be bounded during the entire system service only if

UNI = lim
t→H

U
NI
(t) ≤ 1

Proof.

Being α a constant, if limt→H
B(t)
α > 1, it means

limt→H B(t) > α, therefore the average rate at which bytes
arrives at the queue exceeds the rate at which the bytes can
be transmitted by the NI device. Consequently, the queue
will tend to grow with no bound, making the queuing latency
infinite.
2

In our subsequent timing analysis, we assume as a necessary
condition, that UNI must be less or equal than 1. Given that
all tasks τi are periodic, UNI can be computed as UNI =∑n

i=1(Mib)/Ti. When the condition mentioned above holds,
the nature of U

NI
(t) impacts the latency. When packets arrive

every b
α , then each packet finds the queue empty. However,

packets can arrive simultaneously, in bursts. Hence, UNI cannot
be used to characterize the queuing latency fully. We must be
sure that the actual packet burst does not overpass the available
queue slots.

We begin by bounding the amount of data sent within
arbitrary time windows.

Lemma 2: In any time window of length t, the tasks can
provide in the NI queue at most g(t) bytes of data, where

g(t) = min

{
n∑

i=1

⌈
t+ Ti
Ti

⌉
Mib, β

maxt

}
. (1)

Proof.

A periodic task τi, in any time window of length t, can
release at most ⌈(t+ Ti)/Ti⌉ jobs (e.g., see [3]). Each job

38



of the tasks sends at most Mi packets, each of size b bytes.
Hence the first term in the minimum of Eq. (1). Note that the
amount of data the tasks can send within a time window is
also limited by the maximum rate with which the NI queue
can be filled, which is given by βmax. The lemma follows. 2

The above lemma can then be used to derive a safe condition
under which the NI queue is never full.

Lemma 3: No task can find the NI queue full if

∀t > 0, g(t)− αt ≤ qNI · b. (2)

Proof.
Assume by contradiction that at a certain time instant t1 a task
finds a NI queue full. Let t0 < t1 be the latest time at which
the NI queue has been empty and let t = t1− t0. It holds that
(t0, t1] is an interval of length t in which the NI has always
been busy with packets to transmit. Let x(t) be the amount of
bytes issued by the tasks to be provided in the NI queue in
(t0, t1]. Note that during this interval the NI must have sent
at least αt bytes: hence, if the queue is full at time t1 it holds
that x(t)− αt > qNI · b.

By Lemma 2, in any time window of length t the cumulative
amount of bytes provided in the NI queue is bounded by g(t).
Hence, g(t) ≥ x(t), which implies g(t) − αt > qNI · b. This
contradicts Eq. (2). Hence the lemma follows. 2

Note that Lemma 3 does not consist in a practical test as
any possible value of t shall be checked. This issue is solved
below by limiting the test to a finite number of check-points.

Lemma 4: Lemma 3 holds also if ∀t ∈ Φ, g(t) − αt ≤
qNI · b, where

Φ =

n⋃

i=1

{kTi + ϵ ≤ t∗, k = 0, 1, 2, . . .} ∪ {ψ} (3)

with

t∗ =
2
∑n

i=1Mib

α−∑n
i=1

Mib
Ti

(4)

ψ =

{
t ≤ t∗ |

n∑

i=1

⌈
t+ Ti
Ti

⌉
Mib = βmaxt

}
(5)

and ϵ > 0 arbitrarily small.

Proof.
We prove the lemma by showing that function g(t) − αt
can be maximal only for values t ∈ Φ. First note that
the minimum of two functions is upper bounded by the
upper bound of one of the two functions. Let’s denote with
G(t) =

∑n
i=1

(
t+Ti

Ti
+ 1

)
Mib, hence g(t) ≤ G(t). Denot-

ing m =
∑n

i=1
Mib
Ti

and q = 2
∑n

i=1Mib we can write
G(t) = mt+ q.

Note that both G(t) and αt are two lines with slope UNI =∑n
i=1(Mib)/Ti and α, respectively. Recall that α > UNI (see

Lemma 1). Therefore G(t) and αt intersect and, from their
intersection on, we have g(t) ≤ G(t) ≤ αt and hence also
g(t) − αt ≤ 0. The intersection occurs for the value t∗ such
that G(t∗) = αt∗ and can be computed by solving the latter
equality with respect to t∗,

mt⋆ + q = αt⋆, t⋆ =
2
∑n

i=1Mjb

α−∑n
i=1

Mib
Ti

Hence getting the expression at the Eq. (4). Therefore, for
values of t > t∗ function g(t)− αt cannot be maximal.

If g(t) =
∑n

i=1

⌈
t+Ti

Ti

⌉
Mib note that function g(t) − αt

can be maximal only for those values of t that correspond to
a step of the ceiling term of g(t). The values are of the form
t = kTi + ϵ with k being a non-negative integer and ϵ > 0
arbitrarily small. Conversely, if g(t) = βmaxt, being both the
latter function and αt monotonic increasing, function g(t)−αt
can be maximal only for those values of t for which at t′ =
t+ ϵ (when α ≤ βmax) or t′ = t− ϵ (when α > βmax), with
ϵ > 0 arbitrarily small, it holds g(t′) ̸= βmaxt. These values
of t must be an intersection between the two components that
define g(t), which are those of the set ψ. Lemma follows. 2

Lemma 4 provides a practical test to ensure that no task
can find the NI queue full. Furthermore, ∆max

NI provides a
transmission bound to be used in the timing characterization
of the system.

V. CONCLUSION AND FUTURE WORK

In this article, we presented an analysis on the different
type of latencies that can be introduced by the communi-
cation interface when a task want to send out data packets.
Furthermore, we derived a model, an analytic condition and
respective formal proofs to ensure that introduced latencies,
especially regarding the queueing, are bounded. In the future,
we are willing to extend this work including a fault model that
takes into account the transmission error and error-recovery
strategies also providing a response time analysis model for
tasks. Further, we may investigate whether a different task
scheduling model (e.g. a sporadic sender task) may introduce
lower pessimism in the analysis.

39



REFERENCES

[1] Muhammad Aamir and Mustafa A Zaidi. A buffer management
scheme for packet queues in manet. Tsinghua Science and Technology,
18(6):543–553, 2013.

[2] Dimitri Bertsekas and Robert Gallager. Data Networks (2nd Ed.).
Prentice-Hall, Inc., USA, 1992.

[3] B. Brandenburg. Scheduling and locking in multiprocessor real-time
operating systems. In Ph.D. dissertation, The University of North
Carolina at Chapel Hill, 2011.

[4] Mike Jia, Jiannong Cao, and Lei Yang. Heuristic offloading of con-
current tasks for computation-intensive applications in mobile cloud
computing. In 2014 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 352–357, 2014.

[5] J.F. Kurose and K.W. Ross. Computer Networking: A Top-Down
Approach. Pearson Education, Limited, 2010.

[6] Jinke Ren, Guanding Yu, Yunlong Cai, and Yinghui He. Latency
optimization for resource allocation in mobile-edge computation offload-

ing. IEEE Transactions on Wireless Communications, 17(8):5506–5519,
2018.

[7] Jinke Ren, Guanding Yu, Yinghui He, and Geoffrey Ye Li. Collaborative
cloud and edge computing for latency minimization. IEEE Transactions
on Vehicular Technology, 68(5):5031–5044, 2019.

[8] Dario Sabella, Alessandro Vaillant, Pekka Kuure, Uwe Rauschenbach,
and Fabio Giust. Mobile-edge computing architecture: The role of mec
in the internet of things. IEEE Consumer Electronics Magazine, 5(4):84–
91, 2016.

[9] Lak Sad. Parallelising reception and transmission in queues of secondary
users. International Journal of Electrical and Computer Engineering,
9(4):3221, 2019.

[10] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi,
and Qun Li. Lavea: Latency-aware video analytics on edge computing
platform. In Proceedings of the Second ACM/IEEE Symposium on Edge
Computing, pages 1–13, 2017.

40



Safety Verification of Third-Party Hardware
Modules via Information Flow Tracking

Andres Meza∗, Francesco Restuccia∗, Ryan Kastner∗, and Jason Oberg†
∗University of California San Diego

†Tortuga Logic Inc, San José

Abstract—Modern System-on-Chip (SoC) architectures are
heterogeneous consisting of hundreds of IP cores and shared on-
chip resources. On-chip communication uses simple and efficient
standards like AMBA AXI and TileLink. These communication
standards focus on performance and are often underspecified
with respect to safety and security. If used incorrectly, this opens
the door for nefarious behaviors, which are especially dangerous
in mission-critical applications that have tight constraints on
safety and security. These behaviors are compliant with the on-
chip communication standard and therefore can be difficult to
capture in a standard verification flow. This paper describes
how to use Information Flow Tracking (IFT) to verify the
safety of bus interactions among on-chip hardware resources.
Our methodology is integrated into a safety verification flow
leveraging Tortuga Logic Radix-S IFT tool.

I. INTRODUCTION

Mission-critical systems increasingly rely on system-on-
chip (SoC) architectures to deliver high performance and meet
real-time constraints. For example, deep neural networks are
commonly executed on custom on-chip hardware accelerators
that perform object detection, image classification, and other
critical computing tasks.

Due to the critical nature of the operating tasks, mission-
critical systems have strict safety and security requirements.
Among them, timing predictability is crucial – the system must
be able to correctly operate its critical functionaries within a
given deadline. Breaking such timing constraints can cause
dramatic consequences.

Heterogeneous systems are composed of multiple special-
ized modules. It is common practice to integrate third-party
modules alongside in-house modules to obtain a platform
with the desired functionality. Communication among these
modules and all of the on-chip resources is facilitated by
a system interconnect implementing an on-chip communica-
tion protocol. In this paper, we use AMBA AXI due to its
widespread usage throughout the industry. A similar analysis
is possible with other on-chip communication protocols, which
we leave as future work.

Generally, each module, be it a third-party module or an
in-house developed module, utilizes the same communication
protocol as the system interconnect to communicate with the
rest of the system. Thus, the role of the system integrator
is to verify that all modules, especially third-party modules,
strictly adhere to the requirements set out in the standard for
that protocol.

However, even if every module passes the aforementioned
verification, this does not mean that the system is free of
communication-related vulnerabilities. Previous works have
demonstrated how a lack of specification in the on-chip
protocol definition can be exploited by hardware modules to
generate conditions endangering the execution of the entire
system [1]–[3]. Such conditions must be avoided in any
mission-critical system.

We explore the use of hardware information flow tracking
tools to verify the safety requirements of on-chip communi-
cation. Hardware information flow tracking (IFT) is a ver-
ification technique that enables the tracking of information
as it propagates through the hardware [4]. Hardware IFT
techniques have been developed and popularized to identify
security vulnerabilities in hardware modules throughout the
development lifecycle [5]–[8]. Tortuga Logic Radix-S is a
simulation-based IFT tool for security verification [9]. We
use Radix-S for our experiments, but note that our techniques
generalize to other commercial formal IFT tools.

We demonstrate our safety verification methodology to ver-
ify an AXI bus stall issue caused by a lack of specification in
the AMBA AXI standard [1]. Our verification is performed on
a design using AXI-compliant hardware modules implemented
on a Xilinx FPGA multi-core SoC platform. Although we
focus on a specific issue of the AMBA AXI standard in this
paper, our methodology can be extended for the verification of
other weaknesses or vulnerabilities related to AMBA AXI and,
eventually, to other popular on-chip communication standards
(TileLink, Wishbone).

In the next section, we introduce an example SoC architec-
ture and describe the AXI bus stall problem. Section III de-
scribes our safety verification methodology and demonstrates
its effectiveness for the AXI bus stall problem. We conclude
in Section IV and provide some directions for future work.

II. MOTIVATIONS AND BACKGROUND

The AXI standard leaves great flexibility in the definition
of bus transactions. If not properly managed, such flexibility
has been demonstrated to be the source of unpredictable
behavior ranging from uneven bandwidth distribution [2] to
complete system deadlocks [1]. This section briefly introduces
the architecture under analysis and the safety issue under
consideration.

41



A. Sample SoC architecture

A typical System-on-Chip (SoC) architecture is composed
of a set of controller devices C (e.g., processors, hardware
accelerators, DMAs, etc.) sharing a set of peripheral devices
P (e.g., memory controllers, GPIOs, etc.). Controllers and
peripherals communicate through a system interconnect. We
assume that the system interconnect is based on the AMBA
AXI standard [10]. A generic SoC architecture deploying N
controllers (C1, . . . , CN ) and L peripherals (P1, . . . , PL) is
depicted in Figure 1. Each of the controllers (C1, . . . , CN )
exports a manager (M) interface. Each of the peripherals
exports a subordinate (S) interface. The AXI interconnect IAXI
arbitrates the access of the controllers to the peripherals.

Fig. 1: The sample System-on-chip architecture deploying N con-
troller modules (C) and L peripheral modules (P ).

Bus transactions are issued by controllers and served by
peripherals. An AXI bus transaction starts with the issue of
an address request from the generic controller Ci. The AXI
interconnect samples the address request and routes it to the
destination peripheral Pj . The address request is served by
Pj , which provides the requested read data (in the case of
a read transaction) or accepts the provided write data and
acknowledges with a write response (in the case of a write
transaction).

B. The AXI bus stall problem

Consider a two-controller (C0 and C1), one peripheral
(P0) architecture (see Figure 1 with N = 2 and L = 1).
To demonstrate the issue on real hardware, we consider the
AXI SmartConnect [11] as the system interconnect, which
is the state-of-the-art interconnect for Xilinx systems. AXI
SmartConnect implements a round-robin arbitration to solve
conflicts among controllers. We consider that each controller
issues a single write request. This simple configuration is
enough for showcasing the AXI bus stall problem. It is worth
mentioning that the same considerations hold for architectures
involving more controllers/peripherals and issuing multiple
requests. The described system has been deployed on the
Xilinx ZYNQ Ultrascale+ SoC platform, where C0 and C1 are
two custom high-performance DMAs, while P0 is the shared
DRAM memory controller of the platform. The conditions
generating the AXI bus stall problem are briefly described

next. A full description of the AXI bus stall problem is
reported in [1].

(1) Assume that C0 issues a write request A0 directed to
P0. Once issued, A0 is sampled by IAXI and routed to
P0. Similarly, assume that in the same time frame C1

issues a write request A1 directed to P0.
(2) Assume that the round-robin arbitration at IAXI is won

by A0 – this means that A0 is propagated to P0 by IAXI
before A1.

(3) According to the AXI standard, after a write request is
issued, the controller should provide the corresponding
data to be written in the peripheral. However, AXI does
not define any time limit for the controllers to provide
the data words after a request has been granted.

(4) If C0 delays the data provisioning for A0, the service of
A1 is delayed – A0 has been propagated first by IAXI to
reach P0. This means that even if C1 is ready to provide
the data corresponding to its transaction A1, such data
cannot be propagated by IAXI to P0 until C0 completes
the provisioning of all of the data words corresponding
to A0 (data interleaving is forbidden in write transactions
beginning in AMBA AXI4 [10]).

The delay possibly introduced by C0 is fully compliant with
the AXI standard. According to AXI, C0 can delay its data
provisioning for an unbounded time after booking the bus by
issuing the address request. This means that C0 can leverage
this lack of specification provided by the standard to directly
affect the availability of the shared peripheral P0 to the other
controllers in the system (in the specific case, C1). A similar
issue can happen for read transactions – the description is
omitted for brevity.

III. SAFETY VERIFICATION METHODOLOGY

In the realm of security verification, many tools enable
system integrators to specify security properties and then
check if their system adheres to these properties. Some of
these tools rely on formal methods in order to carry out this
check while others rely on simulation-based methods. Due to
the scaling issues associated with formal methods [4], the
safety verification methodology we propose in this section
relies on simulation-based tools. We leave the investigation
of the trade-offs between formal methods and simulation-
based methods for future works. In this section, we introduce
a method capable of detecting the AXI bus stall problem
described in Section II-B through the use of a commercial
simulation-based IFT tool, supported by a custom-developed,
parametrizable trigger module.

A. Addressing the AXI bus stall problem

At its core, the AXI bus stall problem described in Sec-
tion II-B is caused by controllers not being constrained to
provision data within a limited amount of time after booking
the bus with a write request. In order to mitigate against this,
system integrators need to verify that each controller provi-
sions data within a limited amount of time. The acceptable
amount of time varies depending on the constraints of the

42



system. Once an integrator determines how much delay each
controller can safely introduce into the system, they can follow
the proposed methodology outlined in Section III-C to verify
that each controller meets the appropriate delay requirement.

B. The Trigger Module

Our verification in Section III-C relies on a custom, pa-
rameterizable module (i.e., the trigger module) to track the
state of the write transactions for a single controller. The
inputs to this module are a signal specifying the maximum
delay limit for the controller and the incoming and outgoing
AXI signals of the controller’s write-related channels. The
output of this module is a signal indicating the state of the
controller with respect to write transactions. Specifically, the
module outputs whether the controller is in one of three states:
(1) idle (i.e., not in a transaction), (2) in a transaction and
provisioning data within the delay limit, or (3) in a transaction
and provisioning data outside of the delay limit. With this
module and the information it provides, system integrators can
verify the safety of the controller using the approach described
in the following section.

C. Simulation-Based IFT for Safety Verification

Our safety verification approach relies on simulation-based
information flow tracking. This approach requires a design, a
testbench, IFT properties, and an information flow tracking
tool (e.g., Tortuga Logic’s Radix-S). The following steps
outline the flow of this verification approach when using
Tortuga Logic’s Radix-S.
1) Determine the Delay Limits: The first step in the safety
verification approach determines the appropriate delay limit
for every controller Ci in the system. A controller’s delay
limit is the maximum amount of delay (measured in clock
cycles) the controller can safely introduce into the system.
System integrators must determine this based on the con-
straints of their system. In hard real-time systems, this can
be achieved by applying the results of worst-case analysis
bounding the response time of the hardware modules deployed
in the system [12]–[14]. In systems dealing with softer timing
constraints, profiling and over-provisioning techniques can be
evaluated as an alternative strategy.
2) Insert the Trigger Modules: The second step inserts
a set of trigger modules T into the existing design. Since
each trigger module Ti can only track the write transaction
state of a single controller, system integrators should add
a trigger module for every controller they wish to verify.
Figure 2 depicts a generic SoC architecture deploying N
controllers (C1, . . . , CN ) and L peripherals (P1, . . . , PL) with
the addition of K trigger modules (T1, . . . , TK) for verification
purposes (note that 0 ≤ K ≤ N ). Given the simplicity of the
trigger module’s design, we measured a minimal impact on the
overall simulation time of the system. This means that system
integrators could add a trigger module for every controller in
their system (i.e., K = N ) with minimal overhead.
3) Specify the Safety Properties: In order to verify that
a controller meets a certain safety requirement (i.e., it does

 
 
 

 
 
 

 
 

Fig. 2: The sample System-on-chip architecture deploying N con-
troller modules (C) and L peripheral modules (P ) with the addi-
tion of K trigger modules (T ) for verification purposes (note that
0 ≤ K ≤ N ).

not introduce a delay larger than its delay limit determined
in Step 1), the safety requirement must be represented as a
formally specified and evaluable expression containing design
signals, explicit values, and operators. We will refer to these
expressions as safety properties, and each safety property will
be specified as an IFT property. We use IFT properties because
they enable us to track a signal as it propagates through a
hardware design [4]. The following safety property template,
based on the security property templates in [15], specifies
that illegally provisioned write data (i.e., data provisioned
after a delay limit as indicated by the output of a trigger
module T ) from some controller C should not flow to the
system interconnect IAXI. In other words, this property will
track a controller’s write data (i.e., ‘C_w_data‘) when
that controller’s trigger module indicates that it is illegally
provisioning data (i.e., ‘T_out‘ == 2‘b11), and if any
of the illegally provisioned write data flow to the system
interconnect (i.e., ‘I_AXI_w_data‘), the property will fail.

‘C_w_data‘ //source sig
when
(‘T_out‘ == 2‘b11) //tracking condition
=/=> //no-flow operator

‘I_AXI_w_data‘ //destination sig

It should be noted that the hardware information flow property
above makes use of the no-flow operator (=/=>) in order
to indicate non-interference between the source signal and a
destination signal [16]. Hardware information flow properties
are a type of hyperproperty that are specified over sets of traces
and are useful for proving a key aspect of information flow
analysis (i.e., non-interference) [15].
4) Generate the IFT Models: The fourth step of the process
uses Tortuga Logic’s Radix-S tool to generate IFT models
for every safety property specified in Step 3. The IFT model
generated by Radix-S is a modified version of the design
to be simulated that has been instrumented with additional

43



logic in order to enable hardware information flow tracking
of the design signals relevant to a particular IFT property. It
should be noted that the IFT models generated by Radix-S
are typically referred to as “security monitors” or “security
models” but, for the sake of clarity, we refer to them as IFT
models in this safety verification context.

5) Create Testbench: In the fifth step of the process system
integrators create a testbench in order to drive the simulation
of the design and IFT models. System integrators are likely
to already have a testbench at their disposal for functional
verification purposes. Functional testbenches can be reused
for this safety verification but they may need to be extended
or modified depending on how thoroughly they stimulate the
controllers in the system. Interested readers can refer to [17]
for methods of determining and increasing testbench coverage.

6) Verify Safety Properties via Simulation: The final step
in the safety verification is to verify the specified safety
properties via simulation. After the simulation has been com-
pleted, system integrators determine which, if any, properties
failed and then adequately address the delay introduced by the
controllers associated with those failing properties. In the event
of a failed property during verification, system integrators
should take appropriate countermeasures including but not
limited to requesting a module redesign or sourcing alternative
modules.

We tested our proposed methodology by using it to identify
the AXI bus stall problem in a system integrating fully-
compliant AXI modules. To this end, we leveraged the test
setup described in Section II-B, modifying the DMA modules
to introduce programmable bus stalls during write transactions.
As expected, our proposed methodology was able to detect the
bus stalls introduced by the DMAs – the safety verification
failed any time a DMA module introduced a stall longer than
the maximum allowable stalls parametrized in the specific
instance of the verification.

IV. CONCLUSION

We proposed a safety verification methodology utilizing
simulation-based information flow tracking for the purpose of
verifying the safety of on-chip communication in hardware
modules. We validated this methodology by using it to iden-
tify fully-compliant AXI controllers which introduced delays
capable of causing the AXI bus stall problem via a write
transaction.

While the safety verification methodology was focused on
addressing the write case of the AXI bus stall problem, there
are more safety vulnerabilities allowed for by the AMBA AXI
standard that could be identified using a slightly modified ver-
sion of this methodology. Some of these vulnerabilities include
the read version of the AXI bus stall problem fully described
in [1], the heterogeneous burst length problem described in [2],
and other specific issues that can be generated by behaviors
related to transactions IDs, memory protection, and memory
buffering. Expanding the framework to consider additional
vulnerabilities is a compelling future research direction.

Another interesting direction would explore how other ver-
ification techniques could be used to carry out safety verifi-
cation. For instance, formal methods and standard simulation-
based methods (without IFT) could be used to address the
safety verification task presented in this paper, albeit with
different sets of steps and safety properties. An in-depth
analysis could provide valuable insight regarding the trade-offs
(e.g., effort required by system integrators, verification time
overhead, level of assurance, etc.) between such techniques
for safety verification tasks on systems in real scenarios with
multiple properties to be verified.

REFERENCES

[1] F. Restuccia, A. Biondi, M. Marinoni, and G. Buttazzo, “Safely Pre-
venting Unbounded Delays During Bus Transactions in FPGA-based
SoC,” in 2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 2020.

[2] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,
“Is your bus arbiter really fair? restoring fairness in AXI interconnects
for FPGA SoCs,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 18, no. 5s, p. 51, 2019.

[3] F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, and G. Buttazzo, “Axi
hyperconnect: A predictable, hypervisor-level interconnect for hardware
accelerators in fpga soc,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2020, pp. 1–6.

[4] W. Hu, A. Ardeshiricham, and R. Kastner, “Hardware information flow
tracking,” ACM Computing Surveys (CSUR), vol. 54, no. 4, pp. 1–39,
2021.

[5] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and
R. Kastner, “Theoretical fundamentals of gate level information flow
tracking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 30, no. 8, pp. 1128–1140, 2011.

[6] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer
level information flow tracking for provably secure hardware design,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017. IEEE, 2017, pp. 1691–1696.

[7] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” Acm Sigplan
Notices, vol. 50, no. 4, pp. 503–516, 2015.

[8] C. Pilato, K. Wu, S. Garg, R. Karri, and F. Regazzoni, “Tainthls:
High-level synthesis for dynamic information flow tracking,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 5, pp. 798–808, 2018.

[9] The Tortuga Logic Radix-S offical website, Tortuga Logic,
https://tortugalogic.com/radix-s/.

[10] AMBA AXI and ACE Protocol Specification, ARM, 2011.
[11] SmartConnect, LogiCORE IP Product Guide, Xilinx, 2018, pG247.
[12] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,

“Modeling and Analysis of Bus Contention for Hardware Accelerators
in FPGA SoCs,” in 32st Euromicro Conference on Real-Time Systems
(ECRTS 2020), 2020.

[13] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “A holistic mem-
ory contention analysis for parallel real-time tasks under partitioned
scheduling,” in 2020 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2020, pp. 239–252.

[14] M. Hassan and R. Pellizzoni, “Bounding DRAM interference in COTS
heterogeneous MPSoCs for mixed criticality systems,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, no. 11, pp. 2323–2336, 2018.

[15] F. Restuccia, A. Meza, and R. Kastner, “Aker: A design and verification
framework for safe and secure soc access control,” in 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE,
2021, pp. 1–9.

[16] A. Sabelfeld and A. C. Myers, “Language-based information-flow secu-
rity,” IEEE Journal on selected areas in communications, vol. 21, no. 1,
pp. 5–19, 2003.

[17] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation
of hardware designs,” IEEE Design Test of Computers, vol. 18, no. 4,
pp. 36–45, 2001.

44


	Preamble
	Cover

	Contents
	Invited talks.
	Session 1: Tools, architectures, and resource allocation for the edge.
	Session 2: Invited speakers with papers.
	Session 3: Real-time networks, safety, and queueing delays.

