No-more-unbounded-blocking queues: bounding
transmission latencies in real-time edge computing

Gabriele Serra
Scuola Superiore Sant’Anna
Pisa, Italy
gabriele.serra@santannapisa.it

Abstract—Nowadays, with advancements in computing power
and energy efficiency, embedded system platforms are becoming
able to provide services that, previously, required the cloud to be
served. Accordingly, the edge computing paradigm is becoming
increasingly popular, as it allows, among other advantages, to
foster security and privacy preservation by processing data at the
origin. On the other hand, these systems demand predictability
across the edge-to-cloud continuation. Regardless of the com-
munication link used by the edge node, tasks send out data
employing a transmission queue; for system-designer, analyzing
the time behavior of a task becomes challenging when each task
has to wait a variable amount of time to send a packet. This
work presents a model to analyze the different sources of latency
introduced when dealing with a communication interface. The
mentioned model ensures that the data traffic does not exceed
the transmission queue limit to avoid unbounded blocking on
task execution.

I. INTRODUCTION

Embedded systems are every day more pervasive in human-
beings lives: they are used in any kind of environment, ranging
from agriculture to transports; they fulfill evermore functions,
of which some are related to the safety of environments or
people. Further, with technology advancements, embedded
system platforms are becoming more powerful and they are
able to provide services that, until few years ago, required
server to be accomplished. Therefore, the edge computing
paradigm is becoming increasingly popular. Processing data
closer to its origin drastically reduces the amount of data sent
to the cloud and, therefore, facilitates real-time computation,
reduces energy consumption (together with carbon footprint)
and help preserving data privacy. However, when the functions
performed by the edge-computing system need to interact with
the external environment, the predictability across the edge-to-
cloud continuum is a key requirement. In the meantime, the
use of system resources must be kept efficient.

Especially when dealing with connected systems, the edge
computing nodes are required to deliver a result within a
predefined deadline; the result typically consist in a chunk
of data to be transmitted across the network. Regardless the
communication mechanism used by the node, commonly the
sender task places the packet in a transmission queue. When
the queue reaches the maximum queue size, the task must
wait an unbounded amount of time to transmit the packet.
Furthermore, the device transmission protocol takes some time
to be performed. Indeed, as a consequence, the communication

Pietro Fara
Scuola Superiore Sant’Anna
Pisa, Italy
pietro.fara@santannapisa.it

device introduces latencies between the edge node and the
cloud. This makes particularly challenging to analyze the time
behavior of the system. While it is not possible to bound the
delay introduced by a complex network such as the global
internet, it is interesting to analyze the type of latencies
introduced by the transmission device and how these latencies
must be accounted when analyzing the timing behavior of the
edge node.

Contribution. In summary, this work makes the following
contributions:

o It presents a detailed analysis of the latencies that a packet
can experience during the transmission phase in an edge
node

o It derives an analysis that prevent device transmission
queue to be full, in order to bound the time required for
a task to send data through the communication peripheral

Paper structure. The remainder of this paper is organized
as follows. Section II reviews the related work. Section III
presents the system by considering task model and commu-
nication assumptions. Section IV analyzes queueing effects
and delays in inter-replica communications and Section V
concludes the paper.

II. RELATED WORK

In the last few years, edge computing has become more
popular due to the increase in performance and the decrease
in the size of microcontrollers and devices. A particular
architecture, called Mobile Edge Computing (MEC), is gaining
more attention from researchers, especially for the massive
diffusion of Internet-of-things (IoT) devices. An overview of
this new architecture [8] was presented in 2016. Based on
MEC, many studies have been done to improve the overall
performance of edge-to-cloud applications in terms of latency.
Ren et al. [7] formulated an optimization problem to find the
better solution for splitting the entire computation of a single
task into two different parts: the first one to be executed at the
edge and the second one on the cloud. Another work on latency
optimization based on data compression was presented in 2018
[6]: they analyzed three different computation models: local
compression, edge-cloud compression and partial compression
offloading. In the last model, they formulated an optimization
problem to find the optimal solution in terms of latency.
Latency may also increase because a lot of computation is

CLOUD
- Big data processing
- Business logic

SERVER

EDGE
- Real-time data processing

{7 GATEWAY
- Sensing and actuation :

N
Celve

EMBEDDED PLATFORM

SENSORS /
ACTUATORS

SENSOR ACTUATOR

Fig. 1. An overview of the system architecture.

needed to provide services on mobile applications. In [4], Jia
et al. proposed a heuristic offloading method for computation-
intensive applications in MEC, taking into account the cloud
service latencies and computation time and improving it with
load-balancing techniques. In 2017, LAVEA platform [10] was
designed to offload computation between clients and edge
nodes and to let nearby edge nodes collaborate to provide low-
latency video analytics at places closer to the users. Latency
is also depending on how transmission queues are managed.
In [1], Aamir et al. proposed MANET: a new scheme to
improve packet queues management in terms of packet loss
ratio. Another queue management mechanism, based on the
division of the main queue into two sub-queues, has been
developed in [9].

III. SYSTEM MODEL

This work focuses on analyzing delays introduced during
data transmission from an edge node. As multi-core interfer-
ence is outside the scope of this work, the edge node consists
of an embedded system platform with a single processor.
A set of n periodic tasks {7y,...,7,} is executed on the
mentioned processor. Tasks are scheduled through a fixed-
priority preemptive scheduling algorithm and activated all at
the same time without any initial offset. Hence, each periodic
task 7;, is characterized by a worst-case execution time C}, a
release period 75, and a relative deadline D; < T;. We denote
with H the hyper-period among all periods of tasks ;.

The node is connected to a communication network CN. To
be as general as possible, this work does not take into account
a specific network link. The edge node exposes, on the CN,
an interface capable of sending data and receiving it. From

now on, we will denote the exposed interfaces of the node as
the node-interface NI. Data transmission via the CN occurs by
acting on a few memory-mapped device registers. An overview
of the architecture of the system considered by our model is
shown in Figure 1.

The NI provides an output (and respectively, an input)
buffer organized as a first-in-first-out (FIFO) queue of ¢!
elements, each sized b bytes. Accessing such registers consists
of performing several writing and reading operations on the
memory-mapped device registers. The minimum read/write
rate to access such registers is indicated with 3 (bytes per
time unit), while the maximum rate is denoted by [B"%*.
Furthermore, the NI guarantees a minimum transmission rate
on the link that, in this model, is indicated by « (bytes per
time unit).

To send data out from NI, the content of a packet must be
copied from the task memory to the device queue. Memory
write times are generally shorter than read times; however, we
denote with v minimum read/write rate to access memory. The
model considers a matching rate for read/write operations as
it does not particularly affect the results of this work.

When the NI transmission queue is full, if a task wants to
send data must wait until one of the slots in the queue becomes
empty. For the sake of our model, we are not interested in
analyzing how the NI operates when receiving data.

To summarize, when a task has to send = bytes out, the
NI needs (i) at most x/+ time units to read the data from
the task memory, (ii) at least z/5™%* time units and at most
x/f time units to copy the mentioned data into the NI queue
and (iii) at most x/« time units to transmit such data into the
communication link.

A task 7; exchanges M; data packets with a fixed size of
b bytes. Note that not all the periodic tasks may produce data
that must be sent over the network; hence M; can also be null.

Data transmission is performed through the NI in a mutual-
exclusive way. Thus, each task may have to acquire and release
a lock before and after transmitting each packet. Our model
adopts the immediate priority ceiling (IPC) locking protocol to
avoid priority inversion phenomena. In the case in which all
M, are different from zero, NI is equivalent to a resource
shared by all tasks under the IPC protocol. Therefore, the
critical sections due to the NI access are practically non-
preemptive.

We indicate the average amount of bytes transmitted through
the NI as B(t).

IV. TRANSMISSION ANALYSIS

This section will analyze the type of latencies introduced
by the NI, deriving a condition to ensure that the number of
packets sent through the NI peripheral does not exceed the
queue limit to avoid introducing unbounded blocking.

A. Latency modeling

Definition 1: A7 indicates the amount of time that elapses
since a packet is stored in the transmission queue by the sender
task to the time the packet can be considered sent out and

thus available for the subsequent node of the network (that,
commonly, is the network edge router).

In the following subsection, the latency introduced by NI
is studied employing a model commonly used to account for
delays in routers network [2] [5]. Under this model, Ay can
be decomposed as a sum of four different components: prop-
agation latency dp;op, transmission latency dipqns, processing
latency dpyoc, queuing latency dgyeuye-

Therefore, the total latency due to the NI packet transmis-
sion can be computed as:

ANI = dprop + dtrans + dproc + dqueue

The purpose of this work is not to provide an estimation
of the latency Ap; but to demonstrate that, adopting our
methodical analysis, that latency can be bounded. In order to
show that for Ax; exists an upper bound A}¢*, we have to
analyze every single component. In the following subsections,
we will investigate all the sources of latency characterizing
each one.

1) Propagation latency: Once bits are pushed in the CN
link, they need to propagate to the other end. Therefore, the
propagation latency depends on the channel length and the
signal propagation speed for the given medium. Commonly,
propagation latency can be computed as the distance between
devices divided by channel propagation speed. The signal
propagation speed is affected by multiple factors. Although
some specific wireless networks (e.g., wireless acoustic net-
works) may have a propagation latency up to several millisec-
onds, in the majority of cases, if the node is connected by
means of a network cable or a wireless network, the latency
due to the propagation speed lies in the order of nanoseconds.
Accordingly, in the following sections, we will neglect the
propagation latency.

2) Transmission latency: The transmission latency is an
amount that represents the time required by the device to
transmit a chunk of bytes into the link and depends on the
device bandwidth. It is computed as the number of bytes to
be pushed in the link over the transmission bandwidth. Given
that each task exchanges data packets with a fixed size of b
bytes, we may indicate dirqns as: dirans = g = g4 with oy
being a constant factor to account for the transmission time
demanded by each packet.

3) Processing latency: The processing latency represents
the time required to read and write device registers and
performing register shifts. It is fixed for each packet and
does not depend on the packet length. Therefore we denote
dproc = 0, With 0, being the maximum data-size-independent
processing overhead.

4) Queueing latency: The queueing latency represents the
amount of time each packet must wait in the queue to be
transmitted in the link. When the queue is empty, and no other
packet is being transmitted, the queueing latency will be null.
Otherwise, a packet’s queueing latency depends on the number
of currently enqueued packets that wait for transmission.

Assuming that each packet transmission costs the equivalent
of the transmission latency dy,qns plus the processing latency

dproc » the N —th packet in queue will wait (N —1)-(d¢rans+
dproc). Therefore, we can compute the maximum queueing
latency as: dgueue = (qNI —1)- (04 +0,).

Provided all the mentioned latencies definition, the upper
bound AR4® can be computed as: AT = N (0, + 04)

B. Queueing analysis

In our transmission model, we consider the NI queue as a
finite queue. Therefore, when the queue is full, a task cannot
push another packet into it, remaining blocked on the send
operation. A task must perform the send operation on a queue
with available free slots to avoid unbounded blocking.

Let’s assume that the queue can host an infinite number
of packets for the sake of proving the following lemma. Re-
calling the notation used above, that indicates the transmission
bandwidth with « and the average amount of bytes transmitted
through the NI as B(t), we define the transmission interface
utilization average U (t) as U (t) = %

Lemma 1: The latency component caused by queuing dgyeqe
can be bounded during the entire system service only if

UN = lim U (¢) < 1
t—H

Proof.

Being « a constant, if limIHH@ > 1, it means

limy_, 5 B(t) > «, therefore the average rate at which bytes
arrives at the queue exceeds the rate at which the bytes can
be transmitted by the NI device. Consequently, the queue
will tend to grow with no bound, making the queuing latency
infinite.

O

In our subsequent timing analysis, we assume as a necessary
condition, that UN! must be less or equal than 1. Given that
all tasks 7; are periodic, UN! can be computed as UN =
S (M;b)/T;. When the condition mentioned above holds,

the nature of U (¢) impacts the latency. When packets arrive
every g, then each packet finds the queue empty. However,
packets can arrive simultaneously, in bursts. Hence, UN! cannot
be used to characterize the queuing latency fully. We must be
sure that the actual packet burst does not overpass the available
queue slots.

We begin by bounding the amount of data sent within
arbitrary time windows.

Lemma 2: In any time window of length ¢, the tasks can
provide in the NI queue at most g(t) bytes of data, where

g(t) = min {Z P—;TZ—‘ M;b, 5”“””15}) (D)

=1

Proof.

A periodic task 7;, in any time window of length ¢, can
release at most [(¢+ T;)/T;] jobs (e.g., see [3]). Each job

of the tasks sends at most M; packets, each of size b bytes.
Hence the first term in the minimum of Eq. (1). Note that the
amount of data the tasks can send within a time window is
also limited by the maximum rate with which the NI queue
can be filled, which is given by ™%*. The lemma follows. O

The above lemma can then be used to derive a safe condition
under which the NI queue is never full.
Lemma 3: No task can find the NI queue full if

V>0, g(t)—at <. 2)

Proof.

Assume by contradiction that at a certain time instant ¢; a task
finds a NI queue full. Let ¢y < t; be the latest time at which
the NI queue has been empty and let ¢ = t; —to. It holds that
(to, t1] is an interval of length ¢ in which the NI has always
been busy with packets to transmit. Let x(¢) be the amount of
bytes issued by the tasks to be provided in the NI queue in
(to, t1]. Note that during this interval the NI must have sent
at least ot bytes: hence, if the queue is full at time ¢; it holds
that z(t) — at > "' - b.

By Lemma 2, in any time window of length ¢ the cumulative
amount of bytes provided in the NI queue is bounded by g(t).
Hence, g(t) > z(t), which implies g(t) — at > ¢"' - b. This
contradicts Eq. (2). Hence the lemma follows. O

Note that Lemma 3 does not consist in a practical test as
any possible value of ¢ shall be checked. This issue is solved
below by limiting the test to a finite number of check-points.

Lemma 4: Lemma 3 holds also if Vi € ®, g(t) —at <
¢\ - b, where

o= J{kTi+e<t",k=01,2,..3U{} @)
i=1
with E Mo
25" i
— = S
=3 T;

,lp — {t S t* ‘ Z lrt_;Tz“ Mzb: /Bmamt} (5)

i=1

t* =

and € > 0 arbitrarily small.

Proof.

We prove the lemma by showing that function g¢(t) — at
can be maximal only for values ¢ € &. First note that
the minimum of two functions is upper bounded by the
upper bound of one of the two functions. Let’s denote with

Gt) =X, (% + 1) M;b, hence g(t) < G(t). Denot-

mg m = Zi:1 T;

G(t) = mt +q.
Note that both G(t) and «t are two lines with slope UN' =
i (M;b)/T; and «, respectively. Recall that o > UN (see

and ¢ = 2)." |, M;b we can write

Lemma 1). Therefore G(t) and «t intersect and, from their
intersection on, we have g(t) < G(¢) < at and hence also
g(t) — at < 0. The intersection occurs for the value t* such
that G(t*) = at* and can be computed by solving the latter
equality with respect to t*,

23" M:b
mt* 4 q=ott, = 2= Mib
=i T,

Hence getting the expression at the Eq. (4). Therefore, for
values of ¢ > t* function g(¢) — ot cannot be maximal.

If g(t) = >, [HT?TW M;b note that function g(t) — ot
can be maximal only for those values of ¢ that correspond to
a step of the ceiling term of ¢(t). The values are of the form
t = kT; + e with k being a non-negative integer and € > 0
arbitrarily small. Conversely, if g(t) = %", being both the
latter function and at monotonic increasing, function g(t) —at
can be maximal only for those values of ¢ for which at ¢’ =
t+ ¢ (when o < ™) or t' =t — € (when a > ™), with
€ > 0 arbitrarily small, it holds g(t') # £™**t. These values
of ¢ must be an intersection between the two components that
define g(t), which are those of the set . Lemma follows. O

Lemma 4 provides a practical test to ensure that no task
can find the NI queue full. Furthermore, A%/$* provides a
transmission bound to be used in the timing characterization

of the system.

V. CONCLUSION AND FUTURE WORK

In this article, we presented an analysis on the different
type of latencies that can be introduced by the communi-
cation interface when a task want to send out data packets.
Furthermore, we derived a model, an analytic condition and
respective formal proofs to ensure that introduced latencies,
especially regarding the queueing, are bounded. In the future,
we are willing to extend this work including a fault model that
takes into account the transmission error and error-recovery
strategies also providing a response time analysis model for
tasks. Further, we may investigate whether a different task
scheduling model (e.g. a sporadic sender task) may introduce
lower pessimism in the analysis.

[1]

[2]
[3]

[4]

[6]

REFERENCES

Muhammad Aamir and Mustafa A Zaidi. A buffer management
scheme for packet queues in manet. Tsinghua Science and Technology,
18(6):543-553, 2013.

Dimitri Bertsekas and Robert Gallager.
Prentice-Hall, Inc., USA, 1992.

B. Brandenburg. Scheduling and locking in multiprocessor real-time
operating systems. In Ph.D. dissertation, The University of North
Carolina at Chapel Hill, 2011.

Mike Jia, Jiannong Cao, and Lei Yang. Heuristic offloading of con-
current tasks for computation-intensive applications in mobile cloud
computing. In 2014 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 352-357, 2014.

J.F. Kurose and K.W. Ross. Computer Networking: A Top-Down
Approach. Pearson Education, Limited, 2010.

Jinke Ren, Guanding Yu, Yunlong Cai, and Yinghui He. Latency
optimization for resource allocation in mobile-edge computation offload-

Data Networks (2nd Ed.).

[7]

[8]

[9]

[10]

ing. IEEE Transactions on Wireless Communications, 17(8):5506-5519,
2018.

Jinke Ren, Guanding Yu, Yinghui He, and Geoffrey Ye Li. Collaborative
cloud and edge computing for latency minimization. /EEE Transactions
on Vehicular Technology, 68(5):5031-5044, 2019.

Dario Sabella, Alessandro Vaillant, Pekka Kuure, Uwe Rauschenbach,
and Fabio Giust. Mobile-edge computing architecture: The role of mec
in the internet of things. IEEE Consumer Electronics Magazine, 5(4):84—
91, 2016.

Lak Sad. Parallelising reception and transmission in queues of secondary
users. International Journal of Electrical and Computer Engineering,
9(4):3221, 2019.

Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi,
and Qun Li. Lavea: Latency-aware video analytics on edge computing
platform. In Proceedings of the Second ACM/IEEE Symposium on Edge
Computing, pages 1-13, 2017.

