Safety Verification of Third-Party Hardware
Modules via Information Flow Tracking

Andres Meza*, Francesco Restuccia®, Ryan Kastner*, and Jason ObergT
*University of California San Diego
TTortuga Logic Inc, San José

Abstract—Modern System-on-Chip (SoC) architectures are
heterogeneous consisting of hundreds of IP cores and shared on-
chip resources. On-chip communication uses simple and efficient
standards like AMBA AXI and TileLink. These communication
standards focus on performance and are often underspecified
with respect to safety and security. If used incorrectly, this opens
the door for nefarious behaviors, which are especially dangerous
in mission-critical applications that have tight constraints on
safety and security. These behaviors are compliant with the on-
chip communication standard and therefore can be difficult to
capture in a standard verification flow. This paper describes
how to use Information Flow Tracking (IFT) to verify the
safety of bus interactions among on-chip hardware resources.
Our methodology is integrated into a safety verification flow
leveraging Tortuga Logic Radix-S IFT tool.

I. INTRODUCTION

Mission-critical systems increasingly rely on system-on-
chip (SoC) architectures to deliver high performance and meet
real-time constraints. For example, deep neural networks are
commonly executed on custom on-chip hardware accelerators
that perform object detection, image classification, and other
critical computing tasks.

Due to the critical nature of the operating tasks, mission-
critical systems have strict safety and security requirements.
Among them, timing predictability is crucial — the system must
be able to correctly operate its critical functionaries within a
given deadline. Breaking such timing constraints can cause
dramatic consequences.

Heterogeneous systems are composed of multiple special-
ized modules. It is common practice to integrate third-party
modules alongside in-house modules to obtain a platform
with the desired functionality. Communication among these
modules and all of the on-chip resources is facilitated by
a system interconnect implementing an on-chip communica-
tion protocol. In this paper, we use AMBA AXI due to its
widespread usage throughout the industry. A similar analysis
is possible with other on-chip communication protocols, which
we leave as future work.

Generally, each module, be it a third-party module or an
in-house developed module, utilizes the same communication
protocol as the system interconnect to communicate with the
rest of the system. Thus, the role of the system integrator
is to verify that all modules, especially third-party modules,
strictly adhere to the requirements set out in the standard for
that protocol.

However, even if every module passes the aforementioned
verification, this does not mean that the system is free of
communication-related vulnerabilities. Previous works have
demonstrated how a lack of specification in the on-chip
protocol definition can be exploited by hardware modules to
generate conditions endangering the execution of the entire
system [1]-[3]. Such conditions must be avoided in any
mission-critical system.

We explore the use of hardware information flow tracking
tools to verify the safety requirements of on-chip communi-
cation. Hardware information flow tracking (IFT) is a ver-
ification technique that enables the tracking of information
as it propagates through the hardware [4]. Hardware IFT
techniques have been developed and popularized to identify
security vulnerabilities in hardware modules throughout the
development lifecycle [5]-[8]. Tortuga Logic Radix-S is a
simulation-based IFT tool for security verification [9]. We
use Radix-S for our experiments, but note that our techniques
generalize to other commercial formal IFT tools.

We demonstrate our safety verification methodology to ver-
ify an AXI bus stall issue caused by a lack of specification in
the AMBA AXI standard [1]. Our verification is performed on
a design using AXI-compliant hardware modules implemented
on a Xilinx FPGA multi-core SoC platform. Although we
focus on a specific issue of the AMBA AXI standard in this
paper, our methodology can be extended for the verification of
other weaknesses or vulnerabilities related to AMBA AXI and,
eventually, to other popular on-chip communication standards
(TileLink, Wishbone).

In the next section, we introduce an example SoC architec-
ture and describe the AXI bus stall problem. Section III de-
scribes our safety verification methodology and demonstrates
its effectiveness for the AXI bus stall problem. We conclude
in Section IV and provide some directions for future work.

II. MOTIVATIONS AND BACKGROUND

The AXI standard leaves great flexibility in the definition
of bus transactions. If not properly managed, such flexibility
has been demonstrated to be the source of unpredictable
behavior ranging from uneven bandwidth distribution [2] to
complete system deadlocks [1]. This section briefly introduces
the architecture under analysis and the safety issue under
consideration.



A. Sample SoC architecture

A typical System-on-Chip (SoC) architecture is composed
of a set of controller devices C (e.g., processors, hardware
accelerators, DMAs, etc.) sharing a set of peripheral devices
P (e.g., memory controllers, GPIOs, etc.). Controllers and
peripherals communicate through a system interconnect. We
assume that the system interconnect is based on the AMBA
AXI standard [10]. A generic SoC architecture deploying N
controllers (C1,...,Cy) and L peripherals (Pi,...,Pr) is
depicted in Figure 1. Each of the controllers (C,...,Cn)
exports a manager (M) interface. Each of the peripherals
exports a subordinate (S) interface. The AXI interconnect I5x;
arbitrates the access of the controllers to the peripherals.

Bs
Es
=

l—]|
|
l—]|
|
l—]
|

-]

Interconnect

=] [
=]
=] [

11 11 11
S S S
P 185 Pr

Fig. 1: The sample System-on-chip architecture deploying N con-
troller modules (C) and L peripheral modules (P).

Bus transactions are issued by controllers and served by
peripherals. An AXI bus transaction starts with the issue of
an address request from the generic controller C;. The AXI
interconnect samples the address request and routes it to the
destination peripheral P;. The address request is served by
P;, which provides the requested read data (in the case of
a read transaction) or accepts the provided write data and
acknowledges with a write response (in the case of a write
transaction).

B. The AXI bus stall problem

Consider a two-controller (Cy and C4), one peripheral
(Py) architecture (see Figure 1 with N = 2 and L = 1).
To demonstrate the issue on real hardware, we consider the
AXI SmartConnect [11] as the system interconnect, which
is the state-of-the-art interconnect for Xilinx systems. AXI
SmartConnect implements a round-robin arbitration to solve
conflicts among controllers. We consider that each controller
issues a single write request. This simple configuration is
enough for showcasing the AXI bus stall problem. It is worth
mentioning that the same considerations hold for architectures
involving more controllers/peripherals and issuing multiple
requests. The described system has been deployed on the
Xilinx ZYNQ Ultrascale+ SoC platform, where Cj and C are
two custom high-performance DMAs, while Py is the shared
DRAM memory controller of the platform. The conditions
generating the AXI bus stall problem are briefly described

next. A full description of the AXI bus stall problem is
reported in [1].

(1) Assume that C issues a write request Ag directed to
Py. Once issued, Ag is sampled by I5x; and routed to
Py. Similarly, assume that in the same time frame C}
issues a write request A; directed to P,.

(2) Assume that the round-robin arbitration at Iox; is won
by Ay — this means that Aq is propagated to Py by Iaxg
before A;.

(3) According to the AXI standard, after a write request is
issued, the controller should provide the corresponding
data to be written in the peripheral. However, AXI does
not define any time limit for the controllers to provide
the data words after a request has been granted.

(4) If Cy delays the data provisioning for Ay, the service of
A is delayed — Ay has been propagated first by Iaxy to
reach Fy. This means that even if C is ready to provide
the data corresponding to its transaction A;, such data
cannot be propagated by Ixx; to Py until Cy completes
the provisioning of all of the data words corresponding
to Ag (data interleaving is forbidden in write transactions
beginning in AMBA AXI4 [10]).

The delay possibly introduced by Cj is fully compliant with
the AXI standard. According to AXI, Cy can delay its data
provisioning for an unbounded time after booking the bus by
issuing the address request. This means that Cy can leverage
this lack of specification provided by the standard to directly
affect the availability of the shared peripheral Py to the other
controllers in the system (in the specific case, C7). A similar
issue can happen for read transactions — the description is
omitted for brevity.

III. SAFETY VERIFICATION METHODOLOGY

In the realm of security verification, many tools enable
system integrators to specify security properties and then
check if their system adheres to these properties. Some of
these tools rely on formal methods in order to carry out this
check while others rely on simulation-based methods. Due to
the scaling issues associated with formal methods [4], the
safety verification methodology we propose in this section
relies on simulation-based tools. We leave the investigation
of the trade-offs between formal methods and simulation-
based methods for future works. In this section, we introduce
a method capable of detecting the AXI bus stall problem
described in Section II-B through the use of a commercial
simulation-based IFT tool, supported by a custom-developed,
parametrizable trigger module.

A. Addressing the AXI bus stall problem

At its core, the AXI bus stall problem described in Sec-
tion II-B is caused by controllers not being constrained to
provision data within a limited amount of time after booking
the bus with a write request. In order to mitigate against this,
system integrators need to verify that each controller provi-
sions data within a limited amount of time. The acceptable
amount of time varies depending on the constraints of the



system. Once an integrator determines how much delay each
controller can safely introduce into the system, they can follow
the proposed methodology outlined in Section III-C to verify
that each controller meets the appropriate delay requirement.

B. The Trigger Module

Our verification in Section III-C relies on a custom, pa-
rameterizable module (i.e., the trigger module) to track the
state of the write transactions for a single controller. The
inputs to this module are a signal specifying the maximum
delay limit for the controller and the incoming and outgoing
AXI signals of the controller’s write-related channels. The
output of this module is a signal indicating the state of the
controller with respect to write transactions. Specifically, the
module outputs whether the controller is in one of three states:
(1) idle (i.e., not in a transaction), (2) in a transaction and
provisioning data within the delay limit, or (3) in a transaction
and provisioning data outside of the delay limit. With this
module and the information it provides, system integrators can
verify the safety of the controller using the approach described
in the following section.

C. Simulation-Based IFT for Safety Verification

Our safety verification approach relies on simulation-based

information flow tracking. This approach requires a design, a
testbench, IFT properties, and an information flow tracking
tool (e.g., Tortuga Logic’s Radix-S). The following steps
outline the flow of this verification approach when using
Tortuga Logic’s Radix-S.
1) Determine the Delay Limits: The first step in the safety
verification approach determines the appropriate delay limit
for every controller C; in the system. A controller’s delay
limit is the maximum amount of delay (measured in clock
cycles) the controller can safely introduce into the system.
System integrators must determine this based on the con-
straints of their system. In hard real-time systems, this can
be achieved by applying the results of worst-case analysis
bounding the response time of the hardware modules deployed
in the system [12]-[14]. In systems dealing with softer timing
constraints, profiling and over-provisioning techniques can be
evaluated as an alternative strategy.

2) Insert the Trigger Modules: The second step inserts
a set of trigger modules 7" into the existing design. Since
each trigger module 7; can only track the write transaction
state of a single controller, system integrators should add
a trigger module for every controller they wish to verify.
Figure 2 depicts a generic SoC architecture deploying N
controllers (C'y, ..., Cy) and L peripherals (P, ..., Py) with
the addition of K trigger modules (771, . .., Tk) for verification
purposes (note that 0 < K < N). Given the simplicity of the
trigger module’s design, we measured a minimal impact on the
overall simulation time of the system. This means that system
integrators could add a trigger module for every controller in
their system (i.e., K = N) with minimal overhead.

3) Specify the Safety Properties: In order to verify that
a controller meets a certain safety requirement (i.e., it does

Cn
| ]
----- I I T S T

B ]
11 11 | 1
T [TeT] [L2
P1 R PL

Fig. 2: The sample System-on-chip architecture deploying N con-
troller modules (C) and L peripheral modules (P) with the addi-
tion of K trigger modules (1') for verification purposes (note that
0< K <N).

not introduce a delay larger than its delay limit determined
in Step 1), the safety requirement must be represented as a
formally specified and evaluable expression containing design
signals, explicit values, and operators. We will refer to these
expressions as safety properties, and each safety property will
be specified as an IFT property. We use IFT properties because
they enable us to track a signal as it propagates through a
hardware design [4]. The following safety property template,
based on the security property templates in [15], specifies
that illegally provisioned write data (i.e., data provisioned
after a delay limit as indicated by the output of a trigger
module T") from some controller C' should not flow to the
system interconnect Iaxj. In other words, this property will
track a controller’s write data (i.e., ‘C_w_data‘) when
that controller’s trigger module indicates that it is illegally
provisioning data (i.e., ‘T_out ' == 2'bll), and if any
of the illegally provisioned write data flow to the system
interconnect (i.e., *I_AXI_w_data ), the property will fail.

‘C_w_data‘ //source sig
when
(‘T_out' == 2'bll) //tracking condition
=/=> //no—flow operator
‘I AXI w_data‘l //destination sig

It should be noted that the hardware information flow property
above makes use of the no-flow operator (=/=>) in order
to indicate non-interference between the source signal and a
destination signal [16]. Hardware information flow properties
are a type of hyperproperty that are specified over sets of traces
and are useful for proving a key aspect of information flow
analysis (i.e., non-interference) [15].

4) Generate the IFT Models: The fourth step of the process
uses Tortuga Logic’s Radix-S tool to generate IFT models
for every safety property specified in Step 3. The IFT model
generated by Radix-S is a modified version of the design
to be simulated that has been instrumented with additional



logic in order to enable hardware information flow tracking
of the design signals relevant to a particular IFT property. It
should be noted that the IFT models generated by Radix-S
are typically referred to as ‘“security monitors” or “security
models” but, for the sake of clarity, we refer to them as IFT
models in this safety verification context.

5) Create Testbench: In the fifth step of the process system
integrators create a testbench in order to drive the simulation
of the design and IFT models. System integrators are likely
to already have a testbench at their disposal for functional
verification purposes. Functional testbenches can be reused
for this safety verification but they may need to be extended
or modified depending on how thoroughly they stimulate the
controllers in the system. Interested readers can refer to [17]
for methods of determining and increasing testbench coverage.

6) Verify Safety Properties via Simulation: The final step
in the safety verification is to verify the specified safety
properties via simulation. After the simulation has been com-
pleted, system integrators determine which, if any, properties
failed and then adequately address the delay introduced by the
controllers associated with those failing properties. In the event
of a failed property during verification, system integrators
should take appropriate countermeasures including but not
limited to requesting a module redesign or sourcing alternative
modules.

We tested our proposed methodology by using it to identify
the AXI bus stall problem in a system integrating fully-
compliant AXI modules. To this end, we leveraged the test
setup described in Section II-B, modifying the DMA modules
to introduce programmable bus stalls during write transactions.
As expected, our proposed methodology was able to detect the
bus stalls introduced by the DMAs — the safety verification
failed any time a DMA module introduced a stall longer than
the maximum allowable stalls parametrized in the specific
instance of the verification.

IV. CONCLUSION

We proposed a safety verification methodology utilizing
simulation-based information flow tracking for the purpose of
verifying the safety of on-chip communication in hardware
modules. We validated this methodology by using it to iden-
tify fully-compliant AXI controllers which introduced delays
capable of causing the AXI bus stall problem via a write
transaction.

While the safety verification methodology was focused on
addressing the write case of the AXI bus stall problem, there
are more safety vulnerabilities allowed for by the AMBA AXI
standard that could be identified using a slightly modified ver-
sion of this methodology. Some of these vulnerabilities include
the read version of the AXI bus stall problem fully described
in [1], the heterogeneous burst length problem described in [2],
and other specific issues that can be generated by behaviors
related to transactions IDs, memory protection, and memory
buffering. Expanding the framework to consider additional
vulnerabilities is a compelling future research direction.

Another interesting direction would explore how other ver-
ification techniques could be used to carry out safety verifi-
cation. For instance, formal methods and standard simulation-
based methods (without IFT) could be used to address the
safety verification task presented in this paper, albeit with
different sets of steps and safety properties. An in-depth
analysis could provide valuable insight regarding the trade-offs
(e.g., effort required by system integrators, verification time
overhead, level of assurance, etc.) between such techniques
for safety verification tasks on systems in real scenarios with
multiple properties to be verified.

REFERENCES

[1] F. Restuccia, A. Biondi, M. Marinoni, and G. Buttazzo, “Safely Pre-
venting Unbounded Delays During Bus Transactions in FPGA-based
SoC,” in 2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). 1EEE, 2020.

[2] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,
“Is your bus arbiter really fair? restoring fairness in AXI interconnects
for FPGA SoCs,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 18, no. Ss, p. 51, 2019.

[3] F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, and G. Buttazzo, “Axi
hyperconnect: A predictable, hypervisor-level interconnect for hardware
accelerators in fpga soc,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC). 1EEE, 2020, pp. 1-6.

[4] W. Hu, A. Ardeshiricham, and R. Kastner, “Hardware information flow
tracking,” ACM Computing Surveys (CSUR), vol. 54, no. 4, pp. 1-39,
2021.

[5] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and
R. Kastner, “Theoretical fundamentals of gate level information flow
tracking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 30, no. 8, pp. 1128-1140, 2011.

[6] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer
level information flow tracking for provably secure hardware design,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),

2017. 1IEEE, 2017, pp. 1691-1696.

[71 D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” Acm Sigplan
Notices, vol. 50, no. 4, pp. 503-516, 2015.

[8] C. Pilato, K. Wu, S. Garg, R. Karri, and F. Regazzoni, “Tainthls:
High-level synthesis for dynamic information flow tracking,” [EEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 5, pp. 798-808, 2018.

[9]1 The Tortuga Logic Radix-S offical website, Tortuga Logic,

https://tortugalogic.com/radix-s/.
[10] AMBA AXI and ACE Protocol Specification, ARM, 2011.
[11] SmartConnect, LogiCORE IP Product Guide, Xilinx, 2018, pG247.
[12] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,
“Modeling and Analysis of Bus Contention for Hardware Accelerators
in FPGA SoCs,” in 32st Euromicro Conference on Real-Time Systems
(ECRTS 2020), 2020.
D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “A holistic mem-
ory contention analysis for parallel real-time tasks under partitioned
scheduling,” in 2020 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). 1EEE, 2020, pp. 239-252.
M. Hassan and R. Pellizzoni, “Bounding DRAM interference in COTS
heterogeneous MPSoCs for mixed criticality systems,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, no. 11, pp. 2323-2336, 2018.
F. Restuccia, A. Meza, and R. Kastner, “Aker: A design and verification
framework for safe and secure soc access control,” in 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). 1EEE,
2021, pp. 1-9.
A. Sabelfeld and A. C. Myers, “Language-based information-flow secu-
rity,” IEEE Journal on selected areas in communications, vol. 21, no. 1,
pp. 5-19, 2003.
S. Tasiran and K. Keutzer, “Coverage metrics for functional validation
of hardware designs,” IEEE Design Test of Computers, vol. 18, no. 4,
pp. 3645, 2001.

[13]

[14]

[15]

[16]

(17]



