Mark8s - A Management Approach for Automotive
Real-Time Kubernetes Containers in the Mobile
Edge Cloud

Bernhard Blieninger
Automotive System Software and Architecture
fortiss GmbH
Munich, Germany
blieninger @fortiss.org

Abstract—This paper presents a management approach for
real-time Kubernetes clusters in the automotive mobile edge
cloud. As part of a vehicle-centric approach to future autonomous
mobility the toolchain presented is positioned to extend, offload
and enhance the computational capabilities for real-time tasks of
a vehicle to the mobile edge cloud. The sensing of the environment
by sensor-equipped MECs allows an extended preparation of
driving tasks from the MEC to the vehicle. A similarity we seek
to exploit further. With the help of a management prototype, we
show the feasibility of our approach in principle and how such
a system can be realised. A further timing analysis is derived
in order to investigate the overhead the proposed management
toolchain is introducing.

Index Terms—mobile edge cloud, real-time systems, Kuber-
netes, automotive systems

I. INTRODUCTION

The current trend towards fully autonomous driving up to
SAE Level 5 requires future vehicles to provide a dynamic
driving toolchain that is capable of holistically sensing the
current traffic scenario, classifying and validating gathered
sensory data, and then applying these data points as input to
dynamic driving task algorithms [1]. Such toolchains often
rely on machine learning (ML) or stochastic algorithms for
image classification, object detection, or motion prediction
at almost every step [2]. Since these approaches are mostly
based on probability distributions, they often pose an inherent
problem for the safety of autonomous driving and are therefore
deliberately designed to be robust against perturbations. The
highly dynamic nature of various traffic situations also places
great demands on the available computing capacity and si-
multaneously inherits this variability of the situation into its
computation [2].

As autonomous systems, vehicles suffer from limited com-
putational capabilities, as well as energy, space, and weight
constraints, so they are often supported by connecting addi-
tional computational resources, such as a mobile edge cloud
(MEC) at the roadside [3], [4]. These MECs are often also
equipped with sensors on gantries and can thus assess current

This research was funded by the Federal Ministry of Transport and Digital
Infrastructure of Germany in the research project Providentia++.

Department of Informatics
Technical University Munich
Munich, Germany
aaron.dietz@tum.de

Aaron Dietz Prof. Dr. Uwe Baumgarten

Department of Informatics

Technical University Munich
City, Germany

baumgaru@tum.de

driving situations at the respective location and prepare ma-
neuver calculations, leveraging the computation demands off
the vehicles [3], [5].

In this paper we want to address this situation by exploiting
and extending the similarities of vehicle and MEC from a
point of view of task reusability and scheduling. This enables
an increase in the safety of the system by increasing the
predictability of its task behaviour while decreasing the effort
on implementation and code / run time analysis.

We will first give an overview of the problem statement and
motivation, then go into comparison with related work and
show our approach. A prototype illustrating general feasibility
of our approach is described and derived timing analysis is
provided. Finally we conclude by depicting the achievements
and future work to do.

II. MOTIVATION AND PROBLEM STATEMENT

Although the MEC is capable of providing real-time driv-
ing task functionality to vehicles in its surroundings, like
offloading, extending (with gantry sensor data) or adding parts
of the dynamic driving toolchain, the introduction of such
decoupled functionalities always imply offloading or even
transfer costs [6]. In addition to the time delay imposed
by offloading, task runtime parameters have to be known
in advance. These are required for the vehicle to safely
start the offloading procedure without the risk of missing a
deadline on one of its offloaded tasks and thus fail the current
driving task requirements with potentially critical impacts [6].
Furthermore, sudden connection failures between MEC and
vehicle can occur, rendering previously carried out offloading
of tasks useless and potentially harmful. We therefore propose
a vehicle edge cloud design, where the MEC at roadside
is designed as a stationary twin of the vehicle. MEC and
vehicle therefore share their applications, operating system and
hardware design, which is upscaled (on the MEC side) with
the use of Kubernetes containers. The management toolchain
proposed in this paper allows for enabling this particular
use case and the full self-sufficiency of both vehicle and
MEC. Based on this design, the vehicle is provided with full



autonomy, integrating the MEC as potentially unreliable and
less performant ECU clone for real-time task executions into
its scheduling algorithms and policy. Furthermore, applications
can be developed, tested and verified only once if we assume
that they have a modular design and that used algorithms
can cope with certain differences of input values (e.g. traffic
observation angle). Thus, the MEC can be used as a HIL pre-
testing setup for updates or new rollouts of driving functions to
the vehicle, in order to ensure correct application functionality.
In addition, the use of identical hardware/OS (e.g. ARM,
RISC-V / RTOS, RT-enabled Linux) in the MEC and vehicle
means that similar system behaviour can be exploited and
thus runtime data can be obtained, which in turn can provide
clues to the runtime behaviour in the vehicle or, in the best
case, even be highly similar. Previous research has shown,
that such a scenario might be possible through the use of real-
time kernel patches or co-kernel approaches, but also show
drawbacks or unsolved challenges [7]. We assume that this
approach can be combined with the ML-based deployment
and migrations strategy researched in [8]. As of now, we solely
focus on the combination and direct connection of MEC and
vehicle, as further extensions to central cloud systems imply
new limitations in terms of transfer overheads or hardware
architectures.

III. RELATED WORK

Previous research on this topic has already shown that
it is possible to offload real-time applications [9] or whole
workflows [10] in a cloud environment.

In [9], a framework to offload low critical tasks to a cloud
environment is presented, where scheduling and offloading de-
cision are supported by machine learning but require an always
connected cloud to offload low critical tasks. The work misses
some key points of our proposed MEC environment, like the
dynamic driving situation and changing vehicle position.

In [11], a platform is designed for seamless deployment and
management of container clusters, similar to our approach.
They show very quick response times for requests ranging
from 3ms to 370ms. Nevertheless, this approach focuses on
a centralized cloud infrastructure, where a main cloud is
delegating apps to clusters on the edge. A similar approach is
shown in [12], where applications for the MEC are provided
that help with predictive cloud bursting. However, they again
use a centralized architecture and are addressing different
usage scenario.

Whereas [13] investigates on the 5G connection and the
custom Kubernetes scheduler, which improve latency and load
up times, whenever multiple containers are allocated onto the
edge server.

A traffic-aware dynamic container migration using LXC con-
tainers with real-time kernels on lightweight application con-
tainers is considered in [6].

Furthermore, the general idea of real-time containers and their
deployment with respect to time guarantees [14], and with a
focus on real-time and best effort container co-location inside
Kubernetes [15] is just recently getting research interest. The

described papers clearly show that offloading of real-time tasks
to the MEC is possible and that a Kubernetes driven MEC is
capable of hosting real-time applications, even with the means
of machine learning-based scheduling. Nevertheless, to the
best of our knowledge, there has not yet been an approach that
unites a vehicle-centric MEC and a light-weight Kubernetes
approach as we describe it.

IV. APPROACH

We separate the approach into three subsections framing the
general idea, the setup based on this idea and possible use case
scenarios.

A. General Idea

The overall idea of the proposed approach is that the

MEC is a nearly identical hardware and software twin of
the vehicle and that it is capable of providing extended
RT-services to a vehicle if present in the current area of
driving. The MEC is designed to be decentralized and divided
into smaller units containing one or more server clusters and
gantries equipped with sensors as well as 5G base stations for
communication [16] . On top of these clusters, Kubernetes is
introduced allowing for automated deployment and scaling,
as well as a basic management of containerized real-time
applications. In order to fully utilize and adapt the container
management to the automotive real-time MEC environment,
while also enabling task offloading, we introduce Mark8s, a
Management toolchain for automotive real-time Kubernetes
containers (k8s). It implements a communication gateway
per MEC unit enabling fast vehicle-based requests for
computational resources within a certain road sector the
vehicle is passing. In order to be fully decentralized MEC
units are equipped with adjacent neighbour discovery, as well
as inter-gateway communication supporting the exchange
of health information, such as available resources and the
unit’s uptime status between two or more adjacent MEC
units. Combining the computing capability of the MEC unit’s
Kubernetes cluster with gantry sensor systems will also
allow for offering real-time capable services beyond task
offloading from the vehicle or providing pre-computed cloud
information. This combination, in addition to a modularization
of the automotive driving task chain (sensing, calculating,
acting), enables the development and extensive testing of
such tasks on the vehicle-like MEC before applying them to
the more critical vehicle environment. A permanent sensing
container, for example, will fuse and classify found objects for
optimal driving pathway calculation before the information is
sent to the vehicle and eventually cross-checked with internal
sensor and calculation data. Although such driving scenarios
and their associated automotive toolchains can vary widely, a
common scheme consisting of three kinds of containers can
be used as a basis:
e One-shot containers (individual/sensitive services) are
only used by a single client/vehicle. If the container is no
longer needed, gathered data will be deleted and it will be
shut down (e.g. offloaded driving tasks)



e Multi-session containers (multi-user services) are started
once at least one client has requested them. Additional users
will simply get redirected to the already running instance.
Containers will get shut down, if no client is actively
using them after a certain grace period (e.g. driving convoy
applications).

o Permanent containers (permanent services) start running
without being requested and are a special kind of multi-
session container, which do not implement a grace period
(e.g. automatic emergency detection & alarming services).

Underlining the similarity of MEC and vehicle even further,
all examples given could be executed on the vehicle itself, just
requiring different sensor data and action receiver modules.
Besides other advantages, the containerized applications en-
able the car manufacturers (OEMs) to keep the whole chain
of software components within their development workflows
and to guarantee an OEM secured car control when deploying
on potentially foreign MEC infrastructure. It also facilitates
further follow-up questions on (ethical) responsibility and
accounting [17].

B. Setup

The setup derived from the general idea is depicted in

figure 1. As mentioned before, the MEC units consist of one
ore more gantries and server clusters running Mark8s with
Kubernetes. MEC/Mark8s units are connected to the vehicle
via low latency 5G radio cells allowing for direct wireless
network connection with the prototype gateway at the MEC,
where requests are forwarded to the k8s master, which in turn
manages different k8s nodes and the containers executed on
them.
As the proposed overall architecture of the MEC is decentral-
ized, its MEC units or prototype clusters act autonomously.
If requests cannot be handled, the Mark8s cluster gateway
will redirect the client to an adjacent prototype gateway/clus-
ter on the predicted future path of the vehicle. Information
about such adjacent clusters is asynchronously gathered from
a central status aggregation, where newly started prototype
clusters report their location and availability after installation.
Further health and connectivity status of adjacent clusters is
checked bilaterally between neighbouring prototype clusters.
Thus, newly installed clusters will report themselves to the
global discovery, get neighbouring cluster information and
start checking their status and availability. Afterwards, the cen-
tral status aggregation would only be needed for newly added
clusters, or if clusters change their connection parameters and
are thus no longer bilaterally detectable. Such unreachable
or crashed clusters are no longer used for load balancing or
computation considerations but do not affect the availability
of adjacent clusters, as long as the deployment/networking
infrastructure of each cluster is set up in a self-sufficient
manner.

[ management

M contanercaeost }
component

container container
SensorFusX ManufacturerX

k8s node l B

ﬁf k8s nodes
traffic manage

[kssingress prany [ k8s master } gantry / sensor
system

. central status
¥ i X i aggregation
IF data
client / 1% prototype gateway CTIELED - exchange
vehicle J T senordata 1 ptime / health
status

L
prototype cluster

Fig. 1: Sketch of the setup scenario

C. Use Case Scenario

Mlustrating the value and functional principle of the setup,

we constructed a use case scenario enabled by the prototypical
implementation. A vehicle approaching the feeder road of
a highway is setting up a connection via 5G network to
a MEC/prototype cluster unit capable of task offloading,
enhancing or extending. Once the connection is established,
an automated request for needed services is sent to the
prototype gateway. The gateway will then, based on the work-
load of the downstream Kubernetes cluster, either schedule
the requested service and return the service address after it
was successfully launched (SCHEDULED_HERE), redirect
it to another gateway/cluster (OTHER_GATEWAY) or deny
(CAN_NOT_SCHEDULE) the request.
In the event that the requested service could be scheduled
(SCHEDULED_HERE), the responsible prototype cluster is
starting up and providing the containerized application, lever-
aging the computational needs of the vehicle, e.g. prepro-
cessing of a video stream for entertainment or augmented
transparency of surrounding vehicles. Other driving-related use
cases are also conceivable, such as a predictive lane assistant
outsourced to the MEC with increased potential for smoother
driving maneuvers and an extended prediction period due to a
dramatically expanded field of view at gantry bridges. Figure 2
shows a sequence diagram of a successful client request, which
is being scheduled on the local prototype cluster, finishing with
the Kubernetes objects being deployed. Once requested, such
a service container has to be periodically flagged as still active
by the client. This is done because, as the vehicle progresses
on its way, it might lose connection or autonomously connect
to a following prototype cluster unit and radio cell. On top of
these automatically initiated driving tasks, the vehicle can offer
additional manually triggered services for passengers, which
are supported by the prototype cluster.

V. DEMONSTRATOR AND TIMING ANALYSIS

In our setup two multi-core Cavium ThunderX servers
represent the MEC in figure 1 and are running vanilla
Ubuntu 20.04. Within this prototype setup all participants are
connected via Ethernet. A direct 5G connection is omitted
and assumed working as in [18], [16]. To achieve real-time
scheduling capabilities, the PREEMPT_RT patched source



T

| |
| |
| |
{ 1: request service X {

=

|
|
|
|
|
2: calculate if request can be ‘\
|
|
|
|
|

handled by this system

3: deploy service X

4: OK

5: deploy corresponding
deployment with containers

F———1

6: OK

7: deploy corresponding ingress
9: deployment successful, URL ploy ponding ing -

.
|
|
|
in response 8: OK
al
|
|
|
'

Fig. 2: Sequence diagram of a successful client request

code of the Linux kernel was used and compiled enabling
the option Fully Preemptible Kernel. Kubernetes is deployed
and runs on top of this real-time environment. The main
component of the MarK8s prototype cluster is the gateway,
which was designed to be light-weight and is therefore written
in node.js for this demonstration. It uses a simple SQLite
database to store operating information in it, like deployment
service parameters or health status. To exchange data between
vehicle and gateway - as well as for other communication
means - a REST-API is used.

As previous research has already shown the feasability of
a real-time capable Kubernetes as well as the potential of
offloading real-time applications (section III), we want to focus
on the measurement and analysis of the service request (con-
tainer upstart and prior decision making) as a main bottle neck
of our approach. Runtime and benchmarking tests concerning
the real-time capability showed that the PREEMPT_RT was
successfully applied to the benchmarking task containers.
Measurements upstarting an NGINX (alpine) example native
systemd app (4829 ms) and Kubernetes preloaded container
(5010 ms) only revealed an overhead of 181 ms in aver-
age. Cold starts with containers from a remote source took
8731 ms and multi-session container starts - forwarding the
request to a running container - took 85 ms. However, the
most important measurement, showing the applicability of the
prototype, is the request-response period between a client’s
request and the answer from the Mark8s prototype gateway.
The gateway could either schedule a requested service locally
(SCHEDULED_HERE), redirect the client to another gateway
(OTHER_GATEWAY) or reject the request as not schedulable
at the moment (CAN_NOT_SCHEDULE). No matter what
the final result of the request is, the gateway needs to send
the responses as fast as possible to enable the client to
make an informed decision. Every scheduling decision case
was tested 50 times. Additionally we carried out tests for
CAN_NOT_SCHEDULE with the global discovery reachable

and not reachable to cover the worst case where the MEC unit
is isolated. Figure 3 shows the accumulated times measured
on average and the division into the different logical code
sections. It depicts that SCHEDULED_HERE has the longest
response time (272.1 ms), the redirection OTHER_GATEWAY
is in the middle (52.25 ms) and the CAN_NOT_SCHEDULE
response is the quickest (55,08 ms).

300 ‘ -
D baseline
é D local_scheduler
S [] Kubernetes_deployment
3 D alternative_gateway
é 200 - 149.79 D rejection
=
k=
)
g
o 100 | 8
& 79.69
§ N4 0-38
= 2697 2561
N 25,58 20.00] |

SCHEDULED_HERE OTHER_GATEWAY CAN_NOT_SCHEDULE

Scheduling Decision

Fig. 3: Request response time diagram for the 3 different
response variants following a client’s request

Furthermore table I show more detailed numbers and gives
further values derived from the measurements. The overall
value distribution can be explained by taking a deeper look
into the functionality and code structure of the three response
options. They all share a baseline part and a local_scheduler
part, which checks the schedulability of the request locally.
However, if the request is schedulable, more effort has to be
done for the local deployment. If it is not schedulable locally,
the list of adjacent gateways has to be checked and its address
has to be forwarded to the requesting client. If neither is true
and there simply is no available adjacent gateway the request
can be denied quickly.

Given the above mentioned use case, where a vehicle is
entering the MEC-enabled section of a smart road, these first
timing analyses show promising results which can only be
further evaluated with real workload containers and the full
integration of Mark8s with other approaches like [15] and [14].

VI. CONCLUSION

We propose a Management approach for automotive real-
time Kubernetes Containers in the Edge Cloud (Mark8s). The
idea of a vehicle-centred automotive future is presented, in
which single MEC units are designed as independent hardware
and software alike stationary vehicles. The overall idea as
well as the design of the toolchain aims to improve fault-
tolerance, availability and reusability of applications (modules)
from the MEC to the vehicle, while also allowing for rapid
development and extensive testing of new driving applications
for robustness. The presented prototype shows the feasibility



Scheduling Decision Phase Min. [ 1st Qu. [ Median Mean [ 3rd Qu. [ Max.
baseline 26.544 29.117 32.135 42.628 36.942 149.990
SCHEDULED_HERE local_scheduler 24.157 28.923 32.562 79.694 39.572 1286.690
Kubernetes_deployment | 99.597 112.066 126.370 149.799 160.977 422.249
baseline 21412 22.483 24.205 25.587 26.400 58.927
OTHER_GATEWAY local_scheduler 21.757 22.770 23.823 26.275 25.462 99.184
alternative_gateway 0.299 0.340 0.378 0.408 0.410 1.125
baseline 21414 22.419 23.552 29.094 24.430 134.322
CAN_NOT_SCHEDULE with global discovery local_scheduler 20.995 22.787 23.545 25.619 24.968 101.707
rejection 0.313 0.346 0.367 0.385 0.386 0.879
baseline 19.818 20.905 22.497 24.393 24.278 51.964
CAN_NOT_SCHEDULE without global discovery local_scheduler 19.700 21.460 23.277 23.762 24.940 34.613
rejection 0.270 0.301 0.331 0.359 0.359 1.103

TABLE 1I: Measurements of Mark8s’

scheduling decision timings: SCHEDULED_HERE, OTHER_GATEWAY and

CAN_NOT_SCHEDULE with and without working global discovery given in milliseconds

of offloading real-time tasks within such a scenario and gives
a first timing analysis in such a system, which can be further
enriched by enabling built-in safety and automation features
of Kubernetes. Finally, the proposed approach is not very
invasive and uses existing software components, is therefore a
good basis for future extensions and enhancements, like RT-
Kubernetes [14] or REACT [15].

VII. FUTURE WORK

While we can show that our approach is feasible for a real-
time automotive mobile edge cloud environment, certain re-
strictions, like privilege escalation due to the used SYS_NICE
capability in the prototype, remain. This restriction could
be lifted using other available methods like Co-Kernels [7],
depending on the use case. Furthermore, useful extensions
to the orchestration and managing capabilities of MarkS8s,
like predictive container start on gateways at the pathway
of a vehicle, are not implemented yet. As research on the
excluded vehicle part is, as well, still ongoing, we currently try
extending the toolchain with a vehicle-centric ML-supported
schedulability analysis, as presented in [8].

REFERENCES
(1]

Taxonomy and definitions for terms related to driving automation
systems for on-road motor vehicles, ISO/SAE PAS 22736 (2021-08),
2021.

E. Yurtsever, J. Lambert, A. Carballo and K. Takeda, "A Survey of
Autonomous Driving: Common Practices and Emerging Technologies,”
in IEEE Access, vol. 8, pp. 58443-58469, 2020, doi: 10.1109/AC-
CESS.2020.2983149.

S. Raza, S. Wang, M. Ahmed & M.R. Anwar (2019). A Survey
on Vehicular Edge Computing: Architecture, Applications, Technical
Issues, and Future Directions. Wireless Communications and Mobile
Computing, 2019, 3159762. https://doi.org/10.1155/2019/3159762

Intel Corp, "ECU Consolidation Reduces Vehicle Cost, Weight, and
Testing”, Intel Corp, Accessed: Oct. 27, 2021. [Online]. Avail-
able: https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/ecu-consolidation- white-paper.pdf

T. Fleck et al. (2018). Towards Large Scale Urban Traffic Reference
Data: Smart Infrastructure in the Test Area Autonomous Driving Baden-
Wiirttemberg.

S. Maheshwari, S. Choudhury, I. Seskar, and D. Raychaudhuri. “Traffic-
Aware Dynamic Container Migration for Real-Time Support in Mobile
Edge Clouds.” In: 2018 IEEE International Conference on Advanced
Networks and Telecommunications Systems (ANTS). 2018, pp. 1-6.
doi: 10.1109/ANTS.2018.8710163.

[2]

[3]

[4]

[5]

[71 V. Struhar, M. Behnam, M. Ashjaei and A. V. Papadopoulos, "Real-Time
Containers: A Survey” , 2nd Workshop on Fog Computing and the IoT
(Fog-IoT 2020), pp. 7:1-7:9, 2020, doi: 10.4230/0ASIcs.Fog-10T.2020.7
O. Delgadillo, B. Blieninger, J. Kuhn and U. Baumgarten, A
Generalistic Approach to Machine-Learning-Supported Task Migra-
tion on Real-Time Systems.”, J. Low Power Electron. Appl., 2022,
doi:10.3390/jlpeal2020026

M.A. Maruf and A. Azim, "Extending resources for avoiding over-
loads of mixed-criticality tasks in cyber-physical systems”, IET Cyber-
Physical Systems: Theory & Applications, pp. 60-70., 2020, doi:
10.1049/iet-cps.2018.5062

J. Zhou, J. Sun, M. Zhang and Y. Ma, “Dependable Scheduling for
Real-Time Workflows on Cyber—Physical Cloud Systems,” in IEEE
Transactions on Industrial Informatics, vol. 17, no. 11, pp. 7820-7829,
Nov. 2021, doi: 10.1109/TI1.2020.3011506.

H. Mfula, A. Ylid-Jddski and J.K. Nurminen, ”Seamless Kubernetes
Cluster Management in Multi-Cloud and Edge 5G Applications.”, In:
International Conference on High Performance Computing & Simulation
(HPCS 2020). 2021.

F. Faticanti et al. , "Distributed Cloud Intelligence: Implementing an
ETSI MANO-Compliant Predictive Cloud Bursting Solution Using
Openstack and Kubernetes”, In: K. Djemame et al. (eds) Economics
of Grids, Clouds, Systems, and Services. GECON 2020. Lecture Notes
in Computer Science, vol 12441. Springer, Cham. doi: 10.1007/978-3-
030-63058-4_8

M. C. Ogbuachi, A. Reale, P. Suskovics and B. Kovacs, ”Context-Aware
Kubernetes Scheduler for Edge-native Applications on 5G,” in Journal
of Communications Software and Systems, vol. 16, no. 1, pp. 85-94,
April 2020, doi: 10.24138/jcomss.v16i1.1027

S. Fiori, L. Abeni and T. Cucinotta, “RT-kubernetes: containerized
real-time cloud computing”, In Proceedings of the 37th ACM/SI-
GAPP Symposium on Applied Computing (SAC ’22), Association
for Computing Machinery, New York, NY, USA, 2022, pp. 36-39,
doi:10.1145/3477314.3507216

V. Struhdr, S. S. Craciunas, M. Ashjaei, M. Behnam and A. V.
Papadopoulos, "REACT: Enabling Real-Time Container Orchestra-
tion,” 2021 26th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA ), 2021, pp. 1-8, doi:
10.1109/ETFA45728.2021.9613685.

V. Lakshminarasimhan and A. Knoll, ”C-V2X Resource Deployment
Architecture Based on Moving Network Convoys,” 2020 IEEE 91st
Vehicular Technology Conference (VTC2020-Spring), 2020, pp. 1-6,
doi: 10.1109/VTC2020-Spring48590.2020.9128410.

J. Gogoll and J.F. Miiller, ”Autonomous cars: in favor of a mandatory
ethics setting” , Science and engineering ethics, 2017, vol. 23 , no. 3,
pp. 681-700.

M. Tao, K. Ota and M. Dong, "Foud: Integrating Fog and Cloud for
5G-Enabled V2G Networks,” in IEEE Network, vol. 31, no. 2, pp. 8-
13, March/April 2017, doi: 10.1109/MNET.2017.1600213NM.

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]



