
Priority-Driven Real-Time Scheduling in ROS 2:
Potential and Challenges

Hyunjong Choi, Daniel Enright, Hoora Sobhani, Yecheng Xiang, and Hyoseung Kim
University of California, Riverside

{hchoi036, denri006, hsobh002, yxian013, hyoseung}@ucr.edu

Abstract—To ensure timely and safe operations of robotic
applications in a highly dynamic and uncertain environment,
predictable end-to-end behavior of systems is essential. Although
ROS (Robot Operating System) is one of the most prevalent
robotic middleware frameworks, it has shown limitations in real-
time support over the past decade. With this paper, we argue
that the real-time performance and predictability of ROS can
be significantly improved by enabling priority-driven scheduling
in the framework. To support this argument, we first review
our recent work on priority-driven chain-aware scheduling and
evaluate it with real-world scenarios through integration into the
open-source reference system, which was developed by Apex.AI
for ROS 2 executor benchmarking. Experimental results on a
resource-constrained platform, i.e., Raspberry Pi 4, demonstrate
that priority-driven scheduling outperforms the current ROS 2
default scheduling scheme in terms of various key performance
indicators, e.g., latency, message drop, and jitter. In addition,
we discuss two other challenges, multi-threaded executor design
and accelerator support, which have not yet been studied but are
essential for better real-time performance in ROS 2.

I. INTRODUCTION

ROS (Robot Operating System) has gained the spotlight
among developers in the robotics community by facilitating
software modularity and composability in the development
of robotic applications. However, over the past decade, ROS
has shown major shortcomings in real-time support required
for safety-critical applications. Although ROS 2, the new
version of ROS, aims to better support real-time capabilities
by employing a new software architecture and the Data Distri-
bution Service (DDS), it still remains challenging to guarantee
stringent timing constraints in ROS-based systems.

Ensuring predictable end-to-end latency is crucial for ap-
plications in a safety-critical domain [7]. However, meeting
this requirement in a practical framework like ROS 2 is not
a trivial problem due to the following reasons. First, robotic
applications generally form a set of processing chains whose
data and temporal dependencies are hard to analyze. Second,
ROS 2 has a complex and unique scheduling behavior caused
by multiple schedulable entities, e.g, callbacks, nodes, and
executors, across various abstraction layers, making it difficult
to apply existing real-time techniques. Lastly, due to the
open-source nature of ROS, many programmers independently
develop software components interacting with each other;
hence, it is hard to integrate them into a system for a given
mission while satisfying their performance requirements.

Research on real-time ROS 2 processing chains has started
only recently. Casini et al. [6] proposed a pioneering analysis

technique to upper bound the response time of processing
chains by modeling ROS executors with resource reservations.
Tobias et al. [5] presented enhanced analysis to offer tighter
bounds. These studies laid the groundwork to analyze systems
developed using ROS 2. On the other hand, we took a
completely different approach. While previous studies focused
on the unmodified, default ROS 2 scheduling scheme, we
found that major limitations, such as long end-to-end latency
and pessimism in the analysis, are due to the poor support
of prioritization in the existing scheduling scheme. As a
result, we developed PiCAS [8], a priority-driven chain-aware
scheduling framework for ROS 2, to improve the end-to-end
latency of processing chains with predictable bounds. PiCAS
also answers how to allocate resources to further improve
responsiveness of critical chains.

While some real-time challenges have been studied as
discussed above, there are still many open problems that need
to be explored for ROS 2. All previous work on ROS 2
processing chains, including our own, only assume single-
threaded executors. However, as we will show in Fig. 3, multi-
threaded executors have the potential to offer better latency
and higher throughput in a system equipped with multiple
CPU cores. Besides, since ROS 2 is being widely used
in the development of intelligent autonomous systems with
machine learning algorithms, unpredictable timing behavior
could appear from shared hardware accelerators such as GPU
and FPGA, which would be a serious problem in resource-
constrained embedded robotic platforms.

In this paper, we will explore the potential of the priority-
driven scheduling approach to improve the real-time perfor-
mance and predictability of ROS 2. We will first review our
prior work, PiCAS, and then evaluate it on Raspberry Pi 4 with
the reference system [3], which was developed by Apex.AI to
benchmark the performance of ROS 2 executors under real-
world autonomous driving scenarios. Then we will discuss
the two open problems that we are currently working on, i.e.,
multi-threaded executor design and real-time GPU acceleration
support, which would be essential for ROS 2 to serve as a
practical yet reliable real-time software infrastructure.

II. PRIORITY-DRIVEN CHAIN-AWARE SCHEDULING

A. Background

Our priority-driven chain-aware scheduling, PiCAS [8], was
motivated by the two major problems of the current ROS
2 framework. First, ROS 2 consists of multiple layers of



abstractions that are not aware of the criticality of processing
chains. The unique scheduling behavior of an executor, which
schedules timer callbacks always first, makes other callbacks’
priorities ineffective. Hence, the current ROS 2 executor
ignores the urgency of task chains and results in a fairness-
oriented scheduling behavior. Second, the current ROS 2
framework lacks systematic support for resource allocation
and latency analysis. This causes poor resource utilization and
non-deterministic end-to-end behavior.

To solve these issues, PiCAS enables prioritization of
critical computation chains across complex abstraction layers
of ROS 2 (see Fig. 1 for overview). We re-designed the
current ROS 2 scheduling architecture with the following
considerations: (1) higher-priority chain should execute earlier
than lower-priority chains, and (2) if the instances of the
same chain are assigned to the same CPU core, they should
execute in their arrival order. The latter is to reduce self-
interference between instances of the same chain, thereby
preventing undesirable latency increases.

Across executors

Single chain
on one CPU

Multiple 
chains

on one CPU

Within an executor

Single 
chain

Multiple 
chains

High priority 
chain

Chain 1

Chain 2

or

High priority 
executor

or

𝜏ଵ 𝜏ଶ 𝜏ଷ 𝜏ସ

Low priority High priority

𝜏ଵ 𝜏ଶ 𝜏ଷ

𝜏ଵ 𝜏ଶ 𝜏ଷ 𝜏ସ

𝜏ଵ 𝜏ଶ 𝜏ଵ 𝜏ଶ

𝜏ଷ 𝜏ଵ 𝜏ଷ 𝜏ଵ

Scheduling strategies

Priority assignment

Step 2: Assign from low to high priority

Step 1: Sort in ascending order of chain

Chain-aware node allocation

……

……

……

Sorted nodes

Allocated nodes to 
executors

Allocated executors 
to CPU cores

Support to substantialize 
scheduling strategies

Fig. 1: PiCAS framework

Based on the above considerations, we developed chain
scheduling strategies within an executor and across executors.
To realize these scheduling strategies, PiCAS introduces a
callback priority assignment scheme. It assigns strictly higher
priority to callbacks of more critical chains, and within each
chain, it prioritizes callbacks in the front to those in the back
to avoid the self interference problem. PiCAS also includes a
chain-aware node allocation algorithm to allocate given nodes
to executors, and then maps executors to available CPU cores
while following the scheduling strategies. This algorithm tries
to allocate all nodes associated with the same chain to the same
CPU core whenever possible in order to minimize interference
between different chains.

B. Evaluation of Priority-Driven Scheduling

To understand the benefit of the priority-based scheduling
approach under a realistic scenario, we evaluate PiCAS with
the reference system [3] that was developed by Apex.AI
and introduced at the ROS 2 Real-Time Executor Workshop
held in conjunction with ROSCon 2021 [2]. The reference
system resembles the lidar-based perception pipeline of Auto-
ware.Auto [4], as illustrated in Fig. 2. We integrated PiCAS

Front Lidar Driver Rear Lidar Driver Point Cloud Map Visualizer Lanelet2 Map

Front Points Transformer Rear Points Transformer Point Cloud Map Loader Parking Planner

Voxel Grid Downsampler

Lane Planner

Ray Ground Filter Object collision Estimator

MPC Controller

Euclidean Cluster Settings

Intersection Output

Euclidean Cluster Detector

Point Cloud Fusion NDT Localizer

Lanelet2 Global Planner

Lanelet2 Map Loader

Vehicle Interface

Behavior Planner
Vehicle DBW System

: Criticality of chains> > : hot topic path (latency is the one of KPIs)

Fig. 2: Chain configuration of Autoware model

into the reference system running on the Galactic version of
ROS 2 in a Raspberry Pi 4 platform.
Key performance indicators (KPIs). For ease of benchmark-
ing, the reference system evaluates various KPIs such as:
• Latency of hot topic path: In a real-world scenario, the

reference system should recognize obstacles as quickly as
possible to avoid collisions. Thus, the lower latency from
the Front Lidar to the Object Collision Estimator (the red
dotted line shape in Fig 2) is better.

• Number of dropped messages: Since old sensor data is
less valuable than newly sensed data, the old ones can be
dropped in favor of the newest sample, but at the cost of
information is lost. Therefore, the fewer number of dropped
messages is better.

• Timing jitter of Behavior Planner: The Behavior Planner
node should execute periodically, as accurate as possible
according to its set frequency (100 msec). Thus, the lower
jitter and drift of this node are better.

Comparison of approaches. We compare the priority-driven
scheduling approach (ROS2-PiCAS) with the default ROS
2 scheduling scheme (ROS2-default). Two different execu-
tor configurations are considered for ROS2-default: single-
threaded and multi-threaded executors. With the single-
threaded executor, all nodes are allocated to one thread running
on a single CPU core. So, we compare this to PiCAS with
one single-threaded executor. The multi-threaded executor runs
with as many worker threads as the number of available
CPU cores. Since PiCAS does not currently support multi-
threaded executors, we use multiple single-threaded executors
for PiCAS, i.e., four single-threaded executors on four cores
of Raspberry Pi 4, and compare this with the multi-threaded
executor of the default ROS 2.

0

100

200

300

400

500

600

A
ve

ra
ge

 la
te

nc
y 

[m
se

c]

Singlethreaded 
(ROS2-default)

Single executor
(ROS2-PiCAS)

Multithreaded 
(ROS2-default)

Multiple executors
(ROS2-PiCAS)

Fig. 3: Average end-to-end latency of hot topic path

End-to-end latency of hot topic path. Fig. 3 illustrates
the observed average latency of the hot topic path under
four different cases. ROS2-PiCAS with a single executor
reduces average latency by up to 86% compared to the single-
threaded ROS2-default, and shows comparable performance to

2



the multi-threaded ROS2-default. This result demonstrates the
significant benefit of the priority-driven scheduling approach,
which help autonomous vehicles recognize obstacles much
faster and avoid them in a timely manner while using the
same amount of resources.

In case of the multi-threaded executor, ROS2-default per-
forms not as good as ROS2-PiCAS with multiple executors.
This is interesting since the default multi-threaded executor
follows the global scheduling approach that is naturally better
in reclaiming unused resources than partitioned scheduling,
which the multiple single-threaded executors of ROS2-PiCAS
represent. We suspect that this is not due to an inherent flaw
of the multi-thread executor but due to the lack of proper
prioritization support.

TABLE I: Number of dropped messages

Singlethreaded
(ROS2-default)

Single executor
(ROS2-PiCAS)

Multithreaded
(ROS2-default)

Multi. executors
(ROS2-PiCAS)

Mean 0.8681 0.0282 0 0

STD 0.3347 0.1651 0 0

Number of dropped messages. Table I shows the number
of dropped messages. As expected, ROS2-PiCAS outperforms
ROS2-default in a single-threaded executor setup. Note that we
do not see any message drops for the multi-threaded ROS2-
default and the ROS2-PiCAS with multiple executors.

0

50

100

150

200

250

Pe
rio

d 
[m

se
c]

Multi-threaded
(ROS2-default)

Single executor
(ROS2-PiCAS)

Single-threaded
(ROS2-default)

Multiple executors
(ROS2-PiCAS)

Fig. 4: Behavior Planner jitter

Behavior Planner jitter. Fig 4 illustrates the observed execu-
tion period of the Behavior Planner. Any deviation from 100
msec indicates a timing jitter, so a narrow range of observed
values is better. As can be seen, ROS2-PiCAS outperforms
ROS2-default in all configurations. Such a small uncertainty
of the priority-driven scheduling approach can help improve
the predictability of the ROS 2 framework.

III. REAL-TIME SUPPORT FOR MULTI-THREADED
EXECUTORS

Although ROS 2 provides multi-threaded executors, prior
studies [5, 6, 8] have considered only single-threaded execu-
tors. In general, multithreading allows effective utilization of
multiple processors and helps improve system concurrency
and throughput. The benefit of real-time multithreading has
been demonstrated in the context of self-driving cars [10]. We
also have observed that the default multi-threaded executor of
ROS 2 has better latency performance than its single-threaded
counterpart, as shown in Fig. 3. Despite such a benefit of the
ROS 2 multi-threaded executor, to the best of our knowledge,
there is no prior work on analyzing and improving the timing
behavior of the multi-threaded executor for ROS 2. Therefore,

in this section, we discuss challenges that arise with the ROS 2
multi-threaded executor.

In order to make use of the multi-threaded executor in a
system with stringent timing requirements, the very first step
required is to formally analyze its timing behavior as people
did for the single-threaded executor. However, unlike the
single-threaded executor, the analysis of processing chains on a
multi-threaded executor is more challenging due to the runtime
callback distribution across multiple threads and the unsyn-
chronized polling points of the threads. Such challenges makes
it difficult to extend the existing ROS 2 analysis techniques
to multi-threaded executors directly. For analysis purposes,
we are currently modeling single-threaded and multi-threaded
executors as partitioned and global schedulers, respectively.
Throughout this modeling, we aim to extend the conventional
non-preemptive global task scheduling techniques, e.g., [11],
to the ROS 2 environment by taking into account semantic
differences such as callback dependencies, chains, polling
points, and ready set management. We are also working
on extending PiCAS to multi-threaded executors to enable
priority-driven scheduling and to achieve better end-to-end
latency and predictability. Once done, we can compare the
performance of priority-driven callback scheduling in a multi-
threaded executor vs. in multiple single-threaded executors.

ROS 2 provides an interesting feature for multi-threaded
executors, called the callback group, which can be used to
enforce concurrency rules for callbacks. There are two types
of callback groups: mutually-exclusive and reentrant. Based
on the type of the callback groups, the timing behavior of the
system and the end-to-end latency of chains will be different.
This opens new problems that motivated us to further explore:
i) how these callback groups might affect the timing behavior
of ROS 2 executors, ii) how we can analytically model the end-
to-end latency of chains for each type, and iii) how these can
be configured to improve real-time performance. We believe
studies on these issues can lead to more efficient scheduling
approaches in ROS 2, e.g., assigning callbacks to groups and
then scheduling the callback groups.

IV. CHALLENGES WITH REAL-TIME GPU ACCELERATION

This section addresses issues with applications that rely on
GPU accelerated kernels. Many applications designed with
ROS2 utilize asynchronous and unstructured models for kernel
execution on GPU accelerators. While this encourages direct
resource allocation and accelerator kernel calling from individ-
ual ROS2 nodes, this may incur unpredictable real-time behav-
ior, especially when many nodes request the same accelerator
resource. Utilizing shared accelerator resources for complex
software stacks, including autonomous vehicle (AV) stacks, is
inevitable with modern computer and accelerator architecture.
Our on-going work focuses on providing real-time GPU kernel
execution management on resource-constrained systems.

A. Problems with Shared Accelerators

With an increasing amount of shared accelerator utilization
among complex software stacks, comes consequences that

3



compromise real-time guarantees for safety-critical workflows.
For ROS and ROS2 specific AV stacks, many individual
processing chains may necessitate the use of GPU-based accel-
erators for various perception, localization, mapping, and other
tasks. For systems that maintain ample accelerator resources,
blocking time for high-priority chains induced by GPU kernel
execution from low-priority chains may be uncommon. How-
ever, for resource-constrained systems, high-priority chains
may suffer from severe delays and deadline misses due to
priority inversion when low-priority chains have been already
utilizing the shared accelerator resource.

B. Maintaining Real-time Support with Accelerators

A solution that we are currently exploring to address to these
dependability issues relies on a GPU-server-based approach
within the ROS2 software stack. In conventional autonomous
vehicle software design, the callbacks of each node directly
invoke the GPU to execute kernels. Our current approach will
utilize a separate ROS2 node that acts as a GPU server –
handling GPU access requests from all nodes in the stack.
This idea is motivated by our earlier work on real-time GPU
server [9]. The GPU server architecture will employ priority-
based scheduling with support for request-level preemption.
We are also considering concurrent kernel execution with
real-time spatial GPU multitasking [13, 14] and prioritized
CUDA streams [15] for better resource utilization and lower
response time. In Fig. 5, describing the overall architecture,
ROS nodes will request that a specific GPU kernel be executed
on a specific set of data. Intuitively, this will cause additional
delays due to extra memory copies between nodes. However,
minimizing data copy delays with efficient zero-copy IPC
methods like Iceoryx [1] and shared memory transport allows
this architecture to support a very low-overhead accelerator
resource management framework. The GPU-server node will
maintain a structure of all GPU kernels and will schedule
the execution of a kernel on a node’s data in accordance
with the corresponding chain’s priority. Handling GPU kernel
scheduling in the software stack rather than leaving it to
the OS or GPU driver will give applications granular control
over how specific chains access the GPU. Other methods of
GPU multitasking and scheduling, such as Nvidia’s Multi-
Process Service (MPS) [12], can allow for multiple processes
to perform concurrent kernel execution on different SM’s, but
do not provide any real-time, priority-based, or preemptive
support for processing chains in ROS 2.

V. CONCLUSION

In this paper, we presented the benefit of enabling priority-
driven scheduling in the ROS 2 framework and discussed open
challenges. We integrated our prior work on priority-driven
chain-aware scheduling into the reference autonomous system
and evaluated several key performance indicators under a real-
world scenario. The results of the case study demonstrate that
the priority-driven scheduling approach significantly outper-
forms the existing ROS 2 scheduling scheme with respect to
the average end-to-end latency, dropped messages, and jitter of

GPU Kernel Scheduling NodeROS Nodes

System Shared  
Memory

CPU Task

Topic Request Send/Receive

Zero Copy IPC

System
Shared

Memory

Process
Memory

iGPU Task

Discrete  
GPU TaskGPU Memory

M
em

ory C
opy

Asynchronously 
Spawned  

GPU Threads 

GPU Tasks

Fig. 5: ROS 2 GPU server framework

periodic nodes. However, previous work, including our own,
has been conducted under the assumption of a single-threaded
executor, and the extension of existing techniques to the multi-
threaded executor still remains as open problems. Besides,
real-time support of ROS 2 with shared accelerators such as
GPU and FPGA is another challenge that should be resolved
for modern intelligent applications. We discussed these chal-
lenges and outlined directions to address them following the
priority-driven approach.

Our focus in this paper has been around the default ROS
2 executor design and implementation, but there are existing
executors, such as the cbg executor [16] and those proposed
in the ROS 2 Executor Workshop [2]. We plan to evaluate the
effectiveness of our approach against them in the future.

ACKNOWLEDGMENT

We gratefully acknowledge support from the ONR grant
N00014-19-1-2496 and the NSF awards 1943265 & 1955650.

REFERENCES
[1] Eclipse iceoryx - true zero-copy inter-process-communication. https:

//github.com/eclipse-iceoryx/iceoryx, accessed March 2022.
[2] ROS2 Executor: How to make it efficient, real-time and deterministic?

https://www.apex.ai/roscon-21, accessed March 2022.
[3] ROS2 Real-Time Working Group: Reference system. https://github.com/

ros-realtime/reference-system, accessed March 2022.
[4] Autoware Foundation. https://gitlab.com/autowarefoundation/autoware.

auto, accessed May 2022.
[5] T. Blaß et al. A ROS 2 response-time analysis exploiting starvation

freedom and execution-time variance. In RTSS, 2021.
[6] D. Casini et al. Response-time analysis of ROS 2 processing chains

under reservation-based scheduling. In ECRTS, 2019.
[7] H. Choi et al. Chain-based fixed-priority scheduling of loosely-

dependent tasks. In ICCD, 2020.
[8] H. Choi et al. PiCAS: New design of priority-driven chain-aware

scheduling for ROS2. In RTAS, 2021.
[9] H. Kim et al. A server-based approach for predictable GPU access with

improved analysis. Journal of Systems Architecture, 88:97–109, 2018.
[10] J. Kim et al. Parallel scheduling for cyber-physical systems: Analysis

and case study on a self-driving car. In ICCPS, 2013.
[11] J. Lee. Improved schedulability analysis using carry-in limitation

for non-preemptive fixed-priority multiprocessor scheduling. IEEE
Transactions on Computers, 66(10):1816–1823, 2017.

[12] Nvidia. Nvidia multi-process service. https://docs.nvidia.com/deploy/
mps/index.html, accessed March 2022.

[13] S. Saha et al. STGM: Spatio-temporal GPU management for real-time
tasks. In RTCSA, 2019.

[14] Y. Wang et al. Balancing energy efficiency and real-time performance
in GPU scheduling. In RTSS, 2021.

[15] Y. Xiang and H. Kim. Pipelined data-parallel CPU/GPU scheduling for
multi-DNN real-time inference. In RTSS, 2019.

[16] Y. Yang and T. Azumi. Exploring real-time executor on ROS 2. In
ICESS, 2020.

4

https://github.com/eclipse-iceoryx/iceoryx
https://github.com/eclipse-iceoryx/iceoryx
https://www.apex.ai/roscon-21
https://github.com/ros-realtime/reference-system
https://github.com/ros-realtime/reference-system
https://gitlab.com/autowarefoundation/autoware.auto
https://gitlab.com/autowarefoundation/autoware.auto
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html

	Introduction
	Priority-Driven Chain-Aware Scheduling
	Background
	Evaluation of Priority-Driven Scheduling

	Real-Time Support for Multi-Threaded Executors
	Challenges with Real-Time GPU Acceleration
	Problems with Shared Accelerators
	Maintaining Real-time Support with Accelerators

	Conclusion

